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Investigating Dental Care Status with Multilevel Mo-
delling 

Elif Çoker 1  – Meral Yay 2– Ömer Uysal 3 
 
The aim of this study is to explore the status of dental care. For this purpose, the data set is 
taken from a real data set which the survey was carried out in 2003 at Istanbul University 
Cerrahpaşa School of Medicine, Turkey. The  population is defined to be  people who are 
over the age of 18, living in Istanbul. According to the Turkish Statistical Institute indicators, 
Istanbul is divided into three regions. In these regions, there are 25 towns in total and all of 
them are included. From these 25 towns, 285 districts are selected randomly. In total, the 
analyses are performed with the participation of 931 individuals. Taking into account the 
nested structure of the data set (individuals are nested within districts, districts within towns 
and towns within regions), multilevel modelling approaches are investigated.  
 
Keywords: Dental care, Multilevel modelling, Nested data, Gifi 

1. Introduction 

Statistical methods are commonly used in social research. The usage of statisical 
methods in social research can be explained in two parts: the first half of it 
introduces descriptive statistics and inferential methods (confidence intervals and 
significance tests), the second half of it introduces bivariate methods (contingency 
table analysis, regression) and advanced regresion methods (multiple regression, 
analysis of variance, logistic regression and its extensions). In this study we focused 
on an extension of logistic regression called multilevel multinomial logistic 
regression and its application in social research. 

Generally social research is based on individuals. However, since individuals 
live in social groups, they can not be considered independently from them. Despite 
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this structure, many social researchers aim to explain variability in behaviour and 
attitudes of individuals, here we are specifically interested in the use of statistical 
models to analyze quantitative data. Multilevel modellling which has an important 
place in statistical methods aims to redress the balance, by emphasizing both 
individulas and their social contexs. 

The aim of this study is to describe the Multilevel Multinomial Logistic 
Regression Models and to apply these models to a data set collected in Turkey on 
Dental Care Status and then use the Gifi transformation to re-analyze the data set. 

2. Logistic Regression Models 

A great many variables in social sciences are categorical. It is hardly surprising that 
social scientist frequently wants to estimate regression models in which the response 
variable is categorical. In this context logistic regression is a statistical modeling 
method that can be useful. It describes the relationship between the categorical 
response variable and one or more continuous and/or categorical explanatory 
variables. Logistic regression is used when explanatory variables are either 
continuous or categorical and response variables are categorical. Categorical 
variables have two main types of measurement scales. These are nomainal and 
ordinal scales.  Nominal categorical variables have categories that have no natural 
order to them. Ordinal categorical variables have a natural order. The goal of logistic 
regression is to correctly predict the category of response for individual cases using 
the most parsimonious model.  

Early uses were in biomedical studies, but the past 20 years have also seen 
much use in social science research and marketing (Agresti 2002). In this context 
there are two main uses of logistic regression. The first is the prediction of group 
membership. Since logistic regression calculates the probability or success over the 
probability of failure, the results of the analysis are in the form of an odds ratio. Lo-
gistic regression also provides knowledge of the relationships and strengths among 
the variables.   

Logistic regression does not make the typical assumptions: the responses, 
conditional on the explanatory variables do not have to be normally distributed, they 
don’t have to be linearly related, and we don’t require equal variance within each 
group. Suppose there is a single quantitative explanatory variable X. For a binary 
response variable Y, recall π(x) denotes the “success” probability at value x. This 
probability is the parameter for the binomial distribution. Logistic regression has a 
linear form for the logit of this probability, 
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This is called the logistic regression function (logit function). Equation (1) implies 
equation (2) for the probability π(x), using the exponential function 

( )exp ++ = xx eα βα β , 
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In this function the parameter β  indicates the rate of decrease or increase of the 

curve in the Figure 1. When 0>β , ( )xπ  increases as x increases (Agresti 2007). 

Figure 1. Logistic regression functions  

 

 

  

Source: Agresti 2007 
 
The shape of the logistic regression function, which describes the mathematical form 

of the logistic model can be seen in Figure 2. This shows that ( )xπ  increases or 

decreases as an S shaped function of x. The change in the ( / )=P Y X x  per unit 

change in x becomes progressively lower as the conditional mean gets closer to zero 
or 1 (Hosmer-Lemeshow 2000). 
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Figure 2. Linear approximation to logistic regression curve 

 

 

Source: Hosmer-Lemeshow 2000 

3. Multinomial Logistic Regression Models 

Multinomial logistic regression can be used with a categorical response variable that 
has more than two categories, but the categories can be ordered or unordered. It 
compares multiple groups through a series of binary logistic regressions.  The group 
comparisons are equivalent to the comparisons for a dummy-coded response vari-
able, with the category with the highest numeric score used as the baseline category. 
Like logistic regression, multinomial logistic regression does not make any 
assumptions of normality, linearity, or variance homogeneity. The multinomial logit 
model also assumes that the response variable cannot be perfectly predicted from the 
explanatory variables for any case. 

Suppose Y  to be a categorical response with C categories and { }1 2, ,...., Cπ π π  

denotes the response probabilities, satisfying 
1

1
=

=∑
C

c
c

π .  

With n independent observations, the probability distribution for the number 
of outcomes of the C types is multinomial. This distribution defines the probability 
for n observations into C categories. Multinomial logit models simultaneously use 
all pairs of categories by specifying the odds of outcome in one category instead of 
another (Agresti 2002). Logit models pair each response category with the baseline 
category. The model can be expressed as in equation (3): 
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The model has C−1 equations, with separate parameters for each. The effects vary 
according to the category paired with the baseline. If C=2, then this model has a 
single equation, reducing to ordinary logistic regression for binary responses.  

4. Multilevel Multinomial Logistic Regression Model 

Multilevel multinomial logistic regression models (MM-LRM) are developed for 
data sets which have a nested structure. These models are also known as mixed-
effects multinomial logistic regression models or multilevel logistic regression 
models for polytomous data (Hedeker 2003; Skrondal-Rabe-Hesketh 2003).  

For the terminology of multilevel analysis, let i denote the level-1 units 
(individuals) and j denote the level-2 units (clusters). Suppose that there are j=1,...,N  
level-2 units and i=1,..., jn   level-1 units nested within each level-2 unit. Thus the 

total number of level-1 units across level-2 units is 
1=

=∑
N

j
j

n n .  

If the nominal response variable has c categories, the multilevel multinomial logit 
model can be defined in terms of a mixed Generalized Linear Model (Grilli-
Rampichini, 2007):  

( ) ( ) ( ) ( ) ( ) , 2,...,c c c c c
ij ij j ijx c Cη α β ξ δ′= + + + =                            (4)  

It should be noted that there are no category-specific explanatory variables in 
equation (4), although this is possible. Each equation in this model may have a 

different intercept ( ( )cα ) and regression coefficients ( ( )cβ ). Also jξ  and ijδ  are 

vectors of random error terms which show unobserved heterogeneity at the cluster 
and individual level, respectively. We assume the errors are distributed normally 

( (0, )j N ξξ ∼ Σ  and (0, )ij N δδ ∼ Σ  ), the errors for different levels are assumed to 

be independent from each other. 
The multinomial logit link is defined as in equation (5): 
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We consider the response variable ijy  to follow a multinomial distribution spanning 

the set of categories 2,...,c C= . We use 1c =  as the baseline category for which all 

the parameters and the random error terms are set to zero. Thus, the conditional 

probability of 1ijy =  is 

1
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The likelihood function of the multilevel multinomial logistic regression model is 
given in equation (6): 

{ }
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where (2) ( ) (2) ( )( ,..., , ,..., , , )C C
ξ δθ α α β β′ = Σ Σ . We must use integral approximations 

to maximize the likelihood, since the integrals do not have closed-form solutions 

(Grilli-Rampichini 2007). Thus, several methods are proposed and implemented in 
various software packages for the estimation of these models. But the most 
frequently used methods are Marginal quasi-likelihood (MQL), Predictive or 
Penalized quasi-likelihood (PQL) and Full Information Maximum Likelihood 
(FIML). MQL involves expansion around the fixed part of the model and tends to 
underestimate the values of both the fixed and random parameters. PQL involves 
expansion around both the fixed and random part of the model and is more accurate 
than MQL but computationally less stable (Hedeker, 2008; Pickery-Loosveldt 2002). 
PQL and MQL are used in MLwiN (Rasbash et al. 2005). FIML uses   Gauss-
Hermite quadrature for the approximation of the likelihood function’s integral and is 
avaliable in Supermix, SAS PROC NLMIXED (SAS/Stat 2004), Stata (StataCorp 
2005), LIMDEP (Greene 2002) etc. 

5. Gifi 

Gifi is a transformation proposed by Albert Gifi (1989). For a data set which is a 
combination of continous and categorical variables (called mixed), the Gifi 
transformation converts the non-linear categorical variables to a linear scale. Once 
the non-linear variables are transformed to a linear scale, several classical 
multivariate techniques can be applied to the transformed continous data. 

Although Albert Gifi wrote a book about the Gifi transformation, it did not 
recieve much interest for a long time. Michailidis and de Leeuw (1996) applied this 
transformation on a pure categorical data set and then used the classical multivariate 
techniques on the transformed scale to determine the patterns in the data set. 
Following this study, Suman Katragadda (2009) used the Gifi transformation in a 
mixed data set which is more complex than a pure categorical data set. After 
implementing the transformation, the data set was composed of only continous 
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variables. Thus, he applied classical multivariate techniques in the transformed 
continous space and identifed useful patterns. 
As a brief overview of the Gifi transformation, suppose we have m categorical 
variables and denote these variables as , 1,...,jh j m= . Each variable is assumed to 

have jk  categories. Suppose that there are n observations obtained from these m 

variables. As a result, an n x m dimensional information matrix H  can be defined. 
Since the transformation process will lead to some information loss, this loss is 
expressed in a loss function (Gifi 1989): 

1 1
1

1

( ; ,..., ) ( - ) ( - ) ( - )
m

m j j j j j j
j

X Y Y m SS X G Y m tr X G Y X G Yσ − −

=

′ = =  ∑    (7)  

In equation (7), SS is the sum of squares of the H  matrix. For each categorical 
variable, jk  dummy variables can be composed. Thus ( , )jG i t = 0 or 1 can be 

defined as a [ ]1,..., mG G G=  vector with jn x k∑  dimensions. 

The lost function given in equation (7) is the heart of the Gifi system 
(Michailidis-de Leeuw 1996). The goal is to minimize the function simultaneously 
over the X  and jY ’s. In this minimizing problem, several restrictions can be 

imposed. In order to avoid improper solutions corresponding to 0X =  and 0jY = , 

Gifi (1989) imposed the restrictions given in equation (8) and equation (9). 

pX X n I′ =           (8) 

0u X′ =            (9)  
In equation (9), u is a 1p x  dimensional vector consisting of all 1’s. The first 

restriction given in equation (8) standardizes the squared length of the observed 
scores to be equal to n  and  in addition for two and more dimensions, it requires the 

columns to be orthogonal. The second restriction given in equation (9) requires the 
graph plot to be centered around the origin. We can use the Alternating Least 
Squares algorithm to minimize the loss function. 

6. Application 

In the twenty-first century, the considerable part of the health services will contain 
studies about reducing both the extensiveness and the volume of a group of diseases 
starting cardiovascular system diseases, respiratory diseases, cancer, diabetes and 
tooth diseases. In this study dental care status is examined in particular. 

The data set used in the application is taken from a real data set which the 
survey was carried out in Istanbul University Cerrahpaşa School of Medicine, 
Turkey in 2003. The aim of the survey was to examine the dental health of adults. 
To carry out the research, the target group of the survey was selected as people who 
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are over the age of 18, living in Istanbul. According to the Turkish Statistical 
Institute indicators, Istanbul is divided into three regions. In these regions, there are 
25 towns in total and all of them are included. Our main interest is on Dental Care 
Status (DCS) which is measured in a nominal scale from 1 to 6. Here 1 is coded as 
‘all teeth are present’, 2 as ‘most teeth are present, no dentures’, 3 as ‘some dentures 
are present’, 4 as ‘all teeth are dentures’, 5 as ‘neither teeth nor dentures are present’ 
and 6 as ‘other’.  

The data set includes 1000 individuals, but the analyses are performed with 
non-missing 931 individuals. The data set has a nested structure: 931 individuals 
(1st-level) are nested within 285 districts (2nd-level) which are nested within 25 
towns (3rd-level) and 3 regions (4th-level) of Istanbul. Since there are so many 
variables to predict DCS in the survey, as a pre-analysis factor analysis is used for 
the purpose of data reduction. For the prediction of DCS, explanatory variables 
gender, age, tooth brushing, me, doctor, chance and environment are used. The last 
four explanatory variables are composed using factor analysis results. The factor 
‘me’ can be defined as the individual considers herself/himself responsible, ‘doctor’ 
as the individual considers the doctor responsible for his/her dental care, ‘chance’ as 
the individual thinks the dental care status of his/her is like that by chance and 
‘environment’ as the individual thinks the environment is responsible for his/her 
dental care. Gender is coded as zero for women and one for men. Tooth brushing 
variable has a ordinal scale from 1 to 7. For example 1 encodes ‘I brush my teeth 
once a day’ and 7 codes ‘I never brush my teeth’.  

Since we have a nested data structure and our response variable is measured 
on a nominal scale, the first part of the application is about multilevel multinomial 
logistic regression models. The application is performed with the Supermix 
software. To begin with modelling, first of all we have to check that the data set 
really has a 4-level data structure. 

To answer this question two models are composed: a 4-level and a single-
level multinomial logistic regression model. Since these models are nested, the 
deviance statistics is used for comparison. Of course, here, ‘nested’ indicates that a 
specific model can be derived from a more general model by removing parameters. 
For nested models, the difference in the deviances has a chi-square distribution with 
degrees of freedom equal to the difference in the number of parameters estimated in 
the two models. The deviance test can be used to perform a formal chi-square test, in 
order to test whether the more general model fits significantly better than the simpler 
model (Hox 2002). The results suggested that the 4-level multinomial logistic 
regression model is statistically significant compared to the single-level model 
(p<0.001). Thus, it is sensible to go on with the multilevel models. Considering that 
we want a good, but at the same time parsimonious model, we thought to reduce this 
4-level model to a 3-level model by including an explanatory variable describing 
region instead of a level. Besides, it should be kept in mind that four regions is a 
very low number to have variation for DCS. The comparison of these models 
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suggested that a 3-level model including the explanatory variable describing the 
region is better than the 4-level multinomial logistic regression model (p<0.001). 
Next, the first-level explanatory variables are added to the model and the results can 
be seen in Table 1. 

 
Table 1. Three-level multinomial logistic regression model including the 

first-level explanatory variables 

 

Source: own creation 

Looking at Table 1, the estimates of the model suggest that dummy-coded region 
variables, gender and doctor variables are non-significant for all five equations. 
After removing these variables, the final model is obtained and the estimates can be 
seen in Table 2. What we can see from the final model is we have a two-level 
multinomial logistic regression model where individuals are nested within towns. 
This means after removing the non-significant variables from the model, the district 
level also became non-significant. At the end of the table, the ICC values, which 
indicated how much of the variation of DCS lies within the district level, are also 
given. Since all of them are higher than 0.05, it can be considered enough for 
multilevel models (Muthén & Satorra, 1995).  
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Table 2. Final Model: Two-level multinomial logistic regression model including 

the significant first-level explanatory variables 
 

 
Source: own creation 

The second part of the application is about using the Gifi transformation. The Gifi 
transformation is employed for the response variable DCS and the explanatory 
variable tooth brushing which has an ordinal scale. Since the response variable 
becomes continous after the transformation, an ordinary multilevel regression mo-
delling approach is used to predict DCS. Hox’s (2002) 5-step modelling approach is 
used throughout modelling the multilevel regression model. According to this 5-step 
approach, a four-level random-intercept model (M1) is composed and compared 
with a single-level random-intercept model (M2) as a first step in order to check if 
multilevel modelling approach is appropriate. A random-intercept model is a model 
which has no explanatory variables. The estimates of these models can be found in 
Table 3.  
 

Table 3. First step comparing several models to identify optimal 
structure 

 
Source: own creation 
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For the comparison of the 4-level and the single-level models, the difference 
between the deviances is 12.04 with 3 degrees of freedom following a chi-square 
distribution and the related significance level p=0.003<0.01. The null hypothesis is 
rejected here, which means that there is some error variance in the 4-level model for 
regions. So now we are sure that we’re dealing with a 4-level multilevel model in 
which individuals are nested within districts, districts are nested within towns and 
towns are nested within regions. Next, we estimated a 3-level regression model (M3) 
and compared it with the 4-level regression model. Since the deviance statistics are 
exactly the same, the 3-level model, which has one fewer parameters is prefferred 
over the 4-level model.  

As a second step, the first-level explanatory variables are added to the model 
and thus (M4) is composed and the results are given in Table 4, which shows that all 
the factors (me, doctor, chance and environment) are non-significant. After 
removing them, the the model is re-estimated and (M5), which is the final model, is 
obtained. 

Table 4: Second step comparing several models to identify optimal structure 

 

Source: own creation 

The third step would be to add higher-level explanatory variables. Since there wasn’t 
any higher-level explanatory variables, the first-level variables are aggregated to the 
second level but seen that none of them were significant. The fourth step, which is 
assessing whether any of the slopes of explanatory variables have a significant 
variance component between the groups, is also evaluated. Again, there wasn’t any 
significant results. Since we couldn’t find any significant variable which has a 
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random-slope, in order to explain this random slope, adding cross-level interactions 
would be final step. Thus, this step is passed. 

After finding the final models for both multilevel multinomial logistic 
regression and ordinary multilevel regression models, Akaike Information Criterion 
(AIC) is used for comparison. The AIC for the two-level multinomial logistic 
regression model is 2200,14. For the ordinary three-level regression model, the AIC 
is calculated with the formula AIC = Deviance + 2p where p is the number of 
estimated parameter in the model and is calculated as 2082,78. Since the lower value 
of AIC is better, we can conclude that the ordinary three-level regression model is 
preferred. 

7. Discussion 

If the economical conditions of the investment of treatment servives are taken into 
consideration, the minimization of the health budgets is noteworthy. One of the most 
important parts of the health budgets is left to dental health. From this point of view, 
dental care status is explored. For this reason, a multilevel multinomial logistic 
regression and an ordinary multilevel regression model through Gifi transformation 
is examined for dental care status and compared. In the multilevel multinomial 
logistic regression model, we ended up with a two-level model in which individuals 
are nested within towns. And for the prediction of DCS, the final model includes 
age, tooth brushing, me, doctor and environment explanatory variables. The most 
fundamental variable of the model is ‘tooth brushing’. This means, the lower the 
frequency of tooth brushing, the worse the status of dental care is, which is 
reasonable. In the ordinary multilevel regression model, we ended up with a three-
level model in which individuals are nested within districts and districts are nested 
within towns. Here, the final model includes gender, age and tooth brushing 
explanatory variables. And the most important variable of this models seems to be 
gender. With regards to AIC, the ordinal three-level regression model is selected as a 
final model over the two-level multinomial logistic regression model. 

References 

Agresti, A. 2007: Introduction to Categorical Data Analysis. Wiley, New Jersey. 
Agresti, A. 2002: Categorical Data Analysis. Wiley, New Jersey. 
Gifi, A. 1989: Nonlinear Multivariate Analysis. Wiley Series in Probability and 

Mathematical Statistics, New Jersey.  
Greene, W. H. 2002: LIMDEP Version 8.0 User’s Manual. 4th edition, Econometric 

Software, Plainview, New York. 



Investigating Dental Care Status with Multilevel Modelling 

 

1041 

Grilli, L. – Rampichini, C. 2007: A Multilevel Multinomial Logit Model for the 
Analysis of Graduates’ Skills. Stat. Methods&Applications, 16, 381-393. p. 

Hedeker, D. 2008: Multilevel models for ordinal and nominal variables. In J. de 
Leeuw & E. Meijer (Eds.): Handbook of Multilevel Analysis. Springer, New 
York. 

Hedeker, D. 2003: A mixed-effects multinomial logistic regression model. Statistics 
in Medicine, 22, 1433-1446. p. 

Hosmer, D. W. - Lemeshow, S. 2000: Applied Logistic Regression. John Wiley & 
Sons, Canada. 

Hox, J. 2002: Multilevel Analysis: Techniques and Applications. Lawrence Erlbaum 
Associates, New Jersey. 

Katragadda, S. 2008: Multivariate Mixed Data Mining with Gifi System using 
Genetic Algorithm and Information Complexity. Unpublished Doctorate 
Thesis, University of Tennessee, Knoxville. 

Michailidis, G. - de Leeuw, J. 1996: The Gifi System of Descriptive Multivariate 
Analysis, UCLA Statistical Series Preprints 204. Univ. California, Los Ange-
les. 

Muthén, B. O. - Satorra, A. 1995: Complex sample data in structural equation 
modeling. In P.V. Marsden (Ed.): Sociological methodology. Blackwell 
Publishing, Oxford, 267-316. p. 

Pickery, J. – Loosveldt, G. 2002: A Multilevel Multinomial Analysis of Interviewer 
Effects on Various Components on Unit Nonresponse. Quality&Quantity, 36, 
427-437. p. 

Rasbash, J. - Charlton, C. - Browne, W.J. - Healy, M. - Cameron, B. 2009: MLwiN 
Version 2.1.  Centre for Multilevel Modelling, University of Bristol. 

SAS/Stat, 2004: SAS/Stat User’s Guide. version 9.1, SAS Institute, Cary, NC. 
Skrondal, A. – Rabe-Hesketh, S. 2003: Multilevel Logistic Regression for 

Polytomous Data and Rankings. Psychometrika, 68, 267-287. p. 
StataCorp, 2005: Stata Statistical Software: Release 9. College Station, TX. 
Supermix, http://www.ssicentral.com/supermix/index.html 


