CSIKOS SANDOR

PLC PROGRAMMING

w
UNIVERSITY OF SZEGED
FACULTY OF ENGINEERING
SZEGED, 2014

PLC PROGRAMMING

Supported by

Instrument for Pre-accession Assistance (IPA)
HUSRB/1203/221/075 project
JOINT DEVELOPMENT OF CURRICULA AND TEACHING MATERIALS OF
MECHANICAL ENGINEER ON MSc LEVEL

Written by

Csikos Sandor

Editorial work:

Csikos Sandor

Lectured by

Dr. Gyeviki Janos PhD

© Csikos Sandor “All rights reserved.”

Published by
University of Szeged, Faculty of Engineering — Szeged (HUNGARY), 2014

ISBN XXX-XXX-XXX-XXX

\/ ﬁJ
Hungary-Serbia

IPA Cross-border Co-operation Programme

European Union
European Regional Development Fund

CONTENT

FOREWORDcotiiiimimriimmsssnnssssns s sssssss s ssss e sssssss s

1. WHAT IS A PLC? .t emn s nn s smms e e ammn e

.4

1.1. PLC-s then and now (A short history of programmable logic

controllers)
1.2. How the PLC works

1.3. The architecture of a PLC
1.3.1. Discrete I/0O modules
1.3.2. Analog I/O modules

1.4. Programming languages

1.5. PLC operation modes

2. PROGRAMMING WITH THE RSLOGIX 5000............ccocereriiirnnnrermnininnns

2.1. Inputs, Outputs and Basic Operations
2.1.1. Setting Up and Writing Our First Program
2.1.2. Memory Bits
2.1.3. Exercise I: Garage Door
2.1.4. Exercise II: Silo

2.2. It's PLC Time!
2.2.1. Types of Timers and Their Uses
2.2.2. Exercise III: Traffic Control

2.3. Dare to Compare
2.3.1. Comparison Operators
2.3.2. Exercise IV: Traffic Control Revisited

2.4.1 Can Count On You
2.4.1. Types of Counters and Their Uses
2.4.2. Exercise V: Batch Mixing

2.5. Advanced Stuff

4

4

7
8
17

18

24

25

25
25
37
38
42

45
45
50

55
55
58

61
61
64

69

2.5.1. Math Operations 69

2.5.2. Logical Operations 74
2.5.3. File operations 81
2.5.4. Program Control 94
2.5.5. Exercise VI: Bottling Line 100

Literatures

FOREWORD

Programmable Logic Controllers (PLCs) have been used in industrial
applications for more than 35 years and today most of the automated
manufacturing systems use PLCs as control units. Nowadays the potential
physical platform to realize a supervisor in industry is the PLC.

Its high reliability, high stability, friendly programming environment and
complementing with the touch-type man-machine interface, make various
industrial controls more convenient and more visual, economic and reliable.

This book is designed to help people understand the inner workings of PLC-
s. To design and write a well written program with RSLogix 5000.

1. WHAT IS A PLC?

The PLC, also known as programmable controller is defined by the National
Electrical Manufacturers Association (NEMA) in 1978 as:

"A digitally operating electronic apparatus which uses a programmable
memory for the internal storage of instructions by implementing specific
functions such as logic, sequencing, timing, counting, and arithmetic to
control, through digital or analog input/output modules, various types of
machines or processes.”

1.1. PLC-s then and now (A short history of
programmable logic controllers)

Prior to the existence of the PLCs, the control of machines was done
through hard-wired systems. These systems consisted of relays, cam timers,
drum sequencers and dedicated closed loop controllers in the control
panels. Unfortunately, for big projects, the amount of relays counted in
thousands, because of this the control panels were quite large. When a
change in the system was required, the task was expensive and time
consuming.

The American automotive manufacturing industry was the first to realize
the need for replacing relay-based controls. In 1968, Bedford Associates, of
Bedford Massachusetts, created the first PLC (named 084), for GM
Hydramatic (division of General Motors). The PLC was designed to replace
hard-wired controls. Because PLCs were created for the needs of the
automotive industry, it needed to withstand harsh conditions, such as dust,
moisture, heat and cold.

The Modicon (MOdular DIgital CONtroller), company created by Bedford
Associates, was dedicated to developing, manufacturing, selling and
servicing PLCs.

1.2. How the PLC works

The first PLCs were programmed with a technique that was based on relay
logic wiring schematics. This eliminated the need to teach the electricians,
technicians and engineers how to program a computer. This method has
stuck and it is the most common technique for programming PLCs today.

When a process is controlled by a PLC it uses inputs from sensors to make
decisions and update outputs to drive actuators, as shown in Figure 1. The
process is a real process that will change over time. Actuators will drive the
system to new states (or modes of operation). This means that the controller
is limited by the sensors available.

n

2 2

o o

gﬁ‘@ PROCESS >

Bz)

(2B 7 =

O

<
T 5%
22| PLC |8
=5 53

Figure 1 Connection between the PLC and the controlled process

The control loop is a continuous cycle of the PLC reading inputs, solving the
ladder logic, and then changing the outputs. Like any computer this does
not happen instantly. Figure 2 shows the basic operation cycle of a PLC.
When power is turned on initially the PLC does a quick sanity check to
ensure that the hardware is working properly. If there is a problem the PLC
will halt and indicate there is an error. For example, if the PLC power is
dropping and about to go off this will result in one type of fault.

START

Figure 2 A PLC scan cycle

If the PLC passes the sanity check it will then scan (read) all the inputs.
After the inputs values are stored in memory the ladder logic will be
scanned (solved) using the stored values - not the current values. This is
done to prevent logic problems when inputs change during the ladder logic
scan. During execution the output states are stored in a different location in
memory. When the ladder logic scan is complete the outputs will be
updated (the output values will be changed) (Figure 3). After this the system
goes back to do a sanity check, and the loop continues indefinitely. Unlike
normal computers, the entire program will be run every scan. The typical
time for each of the stages is in the order of milliseconds.

PLC
nput
—Input-device File

oooo
ooom
oooo
oooo

[nput Maod ‘FEE

Output
File

oooo
oom
léDDD
oooo

Output MOEE

2

Figure 3 The work flow of a PLC

1.3. The architecture of a PLC

Output device

A PLC consists of five main parts: CPU, Memory, Power Supply, I[/O and

Communication port, which are shown in Figure 4.

Communication
Central
0 Processor
*5’ o
2B
g .=
@) MEMORY
| Program| Data
AC Memory | Memory
or external

Output
Circuits

DC

Power Supply

Figure 4 The main parts of a PLC

EPROM memory is used to store the program instructions in the PLC. RAM
memory is used to store the states of the inputs and outputs. A computer or
hand-held programmer can be used to load and save the programs into the
PLC.

The central processor receives, decodes, stores and processes information
and executes the PLC program that is stored in memory.

Every PLC must have some means of receiving and interpreting signals from
real-world sensors known as inputs, as well as be able to effect control over
real world control elements known as outputs. Inputs are devices that
supply a signal/data to a PLC. Typical examples of inputs are push
buttons, switches, encoders and measurement devices. Outputs are devices
that wait for a signal or data from the PLC to perform their control
functions. Typical examples of outputs are solenoids, lights, horns, motors
and valves. This is known as input/output or I/O capability. Monolithic
(“brick”) PLCs have a fixed amount of I/O capability built into the unit,
while modular (“rack”) PLCs use individual circuit board “cards” to provide
customized I/O capability.

The physical input and output modules can be discrete or analog and can
be selected and specified when purchasing the PLC depending on the
number of the required I/0O lines. Discrete modules have two states on and
off while analog modules have a finite number of values that they can take
over a certain range. The number of these values is determined by the
resolution of the analog module.

1.3.1. Discrete I/O modules

Discrete field inputs devices have normally open (N.O.) and/or normally
closed (N.C.) contacts. The simplest example are pushbuttons which can be
purchased with either N.O. or N.C. mechanical contacts. “Normally” implies
the state of the contacts when the device is NOT activated. The discrete I/O
modules connects field inputs devices of the ON/OFF nature like limit
switches, push button switches, solenoids, solenoid valves or electro-
mechanical relay etc. Each discrete I/O module needs a supply voltage
source. Since these voltages can be of different magnitude or types, I/O
modules are available at various AC and DC voltages ratings as shown in
Table 1. Furthermore, the inputs and outputs are connected to LED’s to
indicate the state and operation of the I/O module.

Table 1 Common ratings for discrete I/O interface modules ordered by

popularity
Interface input module | Interface output module
12-24 V DC 120 V AC
100-120 V AC 24V DC
10-60 V DC 12-48 V AC
12-24 V AC/DC 12-48 V DC
5V DC (TTL) SV DC (TTL)
200-240 V AC 230V AC
48 VDC
24V AC

There are trade-offs depending which voltage we choose:
e DC voltages are usually lower, and therefore safer (i.e., 12-24V).

* DC inputs are very fast, AC inputs require a longer on-time. For
example, a 50 Hz wave may require up to 1/50 s for reasonable
recognition.

* DC voltages can be connected to larger variety of electrical systems.

* AC signals are more immune to noise than DC, so they are suited to
long distances, and noisy (magnetic) environments.

* AC power is easier and less expensive to supply to equipment.
* AC signals are very common in many existing automation devices.
Input Module:

The input module connects the input terminals to the rest of the system.
Each terminal is usually electrically isolated from the internal electronics by
optocouplers. This is a way of passing on the value of the input by use of a

10

light emitting diode and phototransistor. The optocouplers protect the other
parts of the PLC from voltage spikes that would damage them. Thanks to
the optocouplers even if the input module breaks down the rest of the
system does not suffer harm. This does not mean that optocouplers make a
PLC indestructible, they can withstand voltages up to 10 kV-s before letting
it affect the rest of the system.

Input modules usually do not supply power so an external power supply is
required to power the inputs. If there are more power supplies in a system
they need to share a common wire (the terminal labeled O V). There are two
types of discrete input modules current-sinking and current-sourcing. The
terms “sourcing” and “sinking” refer to the direction of current (as denoted
by conventional flow notation) into or out of a device’s control wire.

A sinking input, also known as PNP input requires a device that sources
"pushes" the current. The device accepting (conventional flow) current into
its control terminal is said to be sinking current (Figure 5). While a sourcing
input also known as NPN input requires a device that sinks "pulls" the
current. The device sending (conventional flow) current out of its control
terminal to some other device(s) is said to be sourcing current (Figure 6).

11

Input Module

) . Discrete
Field-device Input

DC Power Chanel

Supply Push Button (sinking)

B T w[o

NO — |
(normally Sinking
24V DC open) Current

COM

Figure 5 Sinking (PNP) input module

12

Input Module

]][]
I N
I N
I N
. . Discrete
Field-device Input
DC Power Chanel
Supply (sourcing)
V+ Q
+0O C i ' }
Button Current -
ol < |
NO IN
(normally
open)

Figure 6 Sourcing (NPN) input module

Output Module:

The output module contains switches activated by the CPU in order to
connect two terminals and so allows current to flow into the external
circuit. Care must be taken not to overload the contacts. The switch may be
a transistor or a relay. Examples of discrete control devices are Indicator
lamps, solenoid valves, and motor contactors (starters). In a manner similar
to discrete inputs, a PLC connects to any number of different discrete final
control devices through a discrete output channel. Discrete output modules
typically use the same form of opto-isolation to allow the PLC’s computer
circuitry to send electrical power to loads: the internal PLC circuitry driving

13

an LED which then activates some form of photosensitive switching device.
Alternatively, small electromechanical relays may be used to interface the
PLC’s output bits to real-world electrical control devices.

As with input modules output modules usually do not supply power, so an
external power supply is required to power the outputs. If there are more
power supplies in a system they need to share a common wire (the terminal
labeled O V). There are two types of discrete output modules current-sinking
(NPN) and current-sourcing (PNP). Notice the difference between the
sourcing input and sourcing output transistors. This is because in the case
of the input the signal supplying device's transistor is dominant.

A sinking output sinks "pulls" the current through the load. The device
accepting (conventional flow) current into its control terminal is said to be
sinking current (Figure 7). While a sourcing output also known as PNP
output sources "pushes" the current through the load. The device sending
(conventional flow) current out of its control terminal to some other device(s)
is said to be sourcing current (Figure 8).

Relay output modules can switch both DC and AC currents. Relay output
modules usually have separated groups. Therefore, different voltages can be
applied to each group as the specific application requires. These modules
can be easily identified by the clicking sound they make. They are the most
universal, but since they use mechanical switches they may be slow for
some applications. Figure 9 shows a relay output module.

Triac output modules are used to drive AC loads at high switching speeds.
Figure 10 shows a triac output module.

14

Output Module

OO m O
OO O O
OO O O
OO O O
Discrete
Output Field-device
Chanel DC Power
(sinking) Indicator Supply
Lamp
O +
o =—)
Sinking
|< Current 24V DC
COM o -

Figure 7 Sinking (NPN) output module

15

Output Module

I
O O O
I I R R
O O O
Discrete
Output Field-device
Chanel DC Power
(sourcing) Supply
C O +
V+
|< Sourcing 24V DC
Current
ouT —> @ o -
Indicator

Lamp

Figure 8 Sourcing (PNP) output module

16

Output Module

][]]
L1 1 O] [
][]]
L1 1 O] [

: Field-device
%Sirette DC Power
Chanels Supply
(relay)

o+
COM1
D--l\ 24V DC
(OUTO ® -
[]~ OUT1 Indicator
__j Lamp
|:|\ COM2 o
| [] 0 24V~
OUT?2 [i]
I:I(OUT3 Val ,]
— ve Field-device
AC Power
Supply

Figure 9 Relay output module

17

Output Module

OO0
OO0
JOON
OO0

Discrete
Output Field-device
Chanel AC Power

(triac) Indicator Supply

Lamp

OUT ® EE

COM
O N

Figure 10 Triac output module

1.3.2. Analog I/O modules

Analog I/O modules differ from discrete I/O modules in the number of
states they can have and their range. To translate real signals to the PLC
and vice-versa the PLC uses converters. Analog inputs have an analog to
digital converter (ADC) while analog outputs have a digital to analog
converter (DAC). The number of states the converter can recognize or create
is characterized by its resolution. If the modules resolution is n bit then
number of states is 2». This is the number by with you divide the range of
the module to obtain the value of 1 bit. Typical analog I/O ranges can be O-
10V, 0-20 mA, 4-20 mA.

18

If you have an analog module with a range of 0-10 V and a resolution of 10
bits that means the module has 1024 states. So 1 bit changes the value by
0,009766 V.

1.4. Programming languages

There exists a large number of languages for PLCs because each
manufacturer develops their own languages for their controller. However
there are five (mostly) standardized languages:

e Structured text (ST)

* Instruction list (IL)

* Ladder diagram (LD)

* Function block diagram (FBD)
* Sequential function chart (SFC)

Besides “structured text” and “sequential function chart” the others are
oriented on the logic of the circuits. This is reflected in the form of
programming. Some languages are better suited for some tasks. Figure 11
shows which languages are suited for which task. Most new PLC-s know at
least the LD, ST and SFC languages and allow you to combine them, so you
can use the language most suited for your needs.

Programing Languages of PLC (IEC 1131-1/3)

text-based representation graphical representation

state-oriented process-oriented

Instruction List Structured Text Furgg%?a?#mk Fffg;éingﬁlan
IL ST FBD SFC

Ul5.3 5.

uli26 IF A&B=1 |

0Q2.1 THEN... ' _4 Q24

ONM 23.1 ELSE... azd=t

=Q24 '

Figure 11 Which tasks are suited which language

19

To discuss further topics of programming we are going to use Ladder Logic
(LL) this is not the same as the LD language. In LL we have 2 power rails
(left power rail, right power rail). The power rails simulate the power supply
lines. Input instructions are entered on the left, output instructions are
entered on the right. We activate outputs by having a logical continuity to
the output. Logical continuity in a ladder rung occurs when there is a
continuous path of TRUE conditions from the left power rail to the output
instruction(s). Let's see what instructions this language has. The
instructions symbols are depicted on Figures 12-14. Each instruction has a
memory location assigned to it.

1:007/0

i

Figure 12 Normally open contact (input)

1:006/5

e

Figure 13 Normally closed contact (input)

0:008/3

—()-

Figure 14 Coil (output)
Normally open contact reads its memory location. If the memory value is 1
the instruction is evaluated TRUE otherwise the instruction is FALSE.

Normally closed contact reads its memory location. If the memory value is O
the instruction is evaluated TRUE otherwise the instruction is FALSE.

Coil writes a memory location. If there is a logical continuity to this
instruction its memory location will be 1 otherwise it will be O.

To show which instruction is evaluated TRUE we will highlighted it green.
An example of a LL program can be seen in Figure 15. To interpret this

20

diagram, imagine that the power is on the vertical line on the left hand side,
we call this the hot rail. On the right hand side is the neutral rail. In Figure
15 there are three rungs, and on each rung there are combinations of
inputs and outputs. If the inputs are opened or closed in the right
combination the power can flow from the hot rail, through the inputs, to
power the outputs, and finally to the neutral rail. An input can come from a
sensor, switch, or any other type of sensor. An output will be some device
outside the PLC that is switched on or off, such as lights or motors.

In the top rung the contacts are normally open and there is no logical
continuity since input2 is false. In the middle rung we see a normally
closed contact with no logical continuity. In the bottom rung we have an
example of logical continuity.

Left Right
power power
rail rail
Input Instructions Output Instructions

(conditions) (actions)

inputl:TRUE

input2:FALSE outputl:FALSE

output2:FALSE

input3:TRUE)
input4:TRUE output3:TRUE
inputl input2 input3 outputl
RungO:FALSE 7 No
0 —4 H H P Logical
\/ Continuity
inputl output2 No
7] R 1:FALSE
1 /[une () Logical
- \J Continuity
inputl input3 input4 output3
5 I 4 Rung2:TRUE Logical
1L Continuit
y

Virtual power flow (not actual current flow)

Figure 15 Sample LL program

21

Let us examine a simple PLC input circuit consisting of a power supply and
a switches. Electrical continuity in an input circuit occurs when there is a

complete path for the current to flow. If an input is active (i.e.,

there is

electrical continuity), the corresponding bit in the input image table will be
set to a 1. If there is no electrical continuity, the bit is reset to a 0. In the
input scan phase the PLC copies the status of ALL of the input terminals to
the input image table (Figure 16).

Input Module

Left Right
power power
o I O O :
rail m o000 rail
2l [[[
Push Buttons st
Discrete
(relesed) CI}?putl
y, . anels
¢ NO PB1 inputl No Electrical Continuity
<Local:1:1.D4gta.0>
(pushed) |<
¢ NO I PB2 input m Electrical Continuity
<Local:1:I.Data.1>
(relesed) Current
M._PB?’ input3 F Electrical Continuity
<Local:1:1.D4ta.2>
(pushed) Current > |<
¢ NC PB4 input] No Electrical Continuity
<Local:1:I1.D4gta.3>
+ O—r j|<
24V
Field-device L
DC Power
Supply
-0
oj|o0olO0O|lOj]O|O|]O|O|O]O]O]|O]|O 1|0

Input Image Table (only 1 word shown)

Figure 16 Scan input phase

22

The PLC program logically connects the input devices to the output
actuators. In the execute program phase the PLC executes the program
using the values in the input image table to update the output image table
(Figure 17).

Input Image Table (only 1 word shown)

ojojojojojoj{ojojoj{ojo0f0j0O0|111]O0
03 02 01 00
Left Right
power power
rail rail
inputl outputl
<Local:1:I.Data.0> <Local:2:0.Data.0>
Rung O 1[() No Logical Continuit;
¢ 10 \J & Y
input2 output2
<Local:1:I.Data.1> <Local:2:0.Data.1>
Rung 1 —4 P * F Logical Continuity
input3 output3
<Local:1:I.Data.2> <Local:2:0.Data.2>
Rung 2 _]/l_ () No Logical Continuit
¢ 1 \/ & Y
input4 output4
<Local:1:I.Data.3> <Local:2:0.Data.3>
Rung 3 —4/? * F Logical Continuity
Input Instructions Output Instructions
(conditions) (actions)
ojojojojojoj{ojojojo|jofjo|j1|101]O0
03 02 01 00

Output Image Table (only 1 word shown)

Figure 17 Execute program phase

23

Every discrete output is assigned to a specific bit in the PLC’s memory
(output image table). In order for an output to turn on, its associated bit
must first be set to 1. In the update outputs phase the PLC copies the
output image table status to the ALL of the output terminals (discrete
output circuits) (Figure 18).

Output Image Table (only 1 word shown)

60jo0jo0ojo0j040j0|0|0O0|0O|J0OjO|1J0O|1]|O

03 02 01 00
Left Right
power power
rail rail
Output Module
o +
24V
Field-device
)] I Y | DC Power
. OO0 Sl
20 O OO O PPY
3m O OO ’_‘0 -
Discrete
Output
Chanel COM

outputl C 3 §
Currﬁg t N\ /
output2 .

7\

output3 (E i) s
Currflgt N/
output4 F
/ AN

LTS

Indicator
Lamps

Figure 18 Update outputs phase

24

1.5. PLC operation modes

PLC-s has 2 types of operation modes. Depending what we want to do we
must set the PLC in the appropriate mode. The modes can be set on the
PLC with a switch or from the programming software. These modes are:

e Program: In this mode you can upload the program to the PLC. The
program will not run.

* Run: In this mode the program is running. The PLC cannot be
programmed.

The PLC programming software also has operation modes. These modes are:

¢ Online: You need to be in this mode to upload, download a program
or monitor the PLC.

e Offline: You need to be in this mode to write or modify a program.

* Monitor: In this mode you can watch the states of the PLC's inputs,
outputs and memory. This is the mode you use for debugging.

25

2. PROGRAMMING WITH THE RSLOGIX
5000

2.1. Inputs, Outputs and Basic Operations

In this section we will learn how to set up and write a simple program
and what are the most basic instructions and what they do. We will assume
that you will know how to set up communications with the help of RSLinx
and have already done so.

There are 2 input and 3 output instructions you need to know to start plc
programming.

e Examine If Open: input instruction. Is true when memory address is
false.

e Examine If Closed: input instruction. Is true when memory address
is true.

e Output Energize: output instruction. Sets the memory address to
true if the condition is true, false if the condition is false.

e Output Latch: output instruction. Sets the memory address to true if
the condition is true.

e Output Unlatch: output instruction. Sets the memory address false if
the condition is true.

With these 5 instructions you can create fairly complex programs. In
the next segment we will see examples for the use of these instructions.

2.1.1. Setting Up and Writing Our First Program

First start the RSLogix 5000 program. Once it loads create a new
program by clicking New (Figure 19). A new window will pop up (Figure 20),
here select the PLC type, the firmware version and type in the program
name. Once you are done click OK. RSLogix 5000 will now create the basic
structure of the program this might take a while. Once it is done select the
path to the PLC by clicking RSWho (Figure 21) and selecting the PLC you
wish to program. When the path is selected we can start writing the
program by opening the Main Routine under the Main Program tag (Figure
22).

26

i RSLogix 5000

File Edit Viewm Search Logic Communications Tools Window Help

@B’“Iﬂl 3| sl @] oo |

No Controller 1, I RN e Path: [USBA11
Mo Farces | :: E'ET @

Mo Edits grlm ﬂ I—||I|:H|IE
Hedundancy L5 i | 1|], Favorites

Figure 19 Create a new program

New Controller x|

“Wendor; Allen-Bradley

Type: L 1769-L23E -0BFCT Compactogixb323E-0BFCT Contraller v} Ok, |
Revizion: Cancel |

™| Bedundancy Enabled Help |

Hame: @ ;

Dezcription:

[-]
Chazziz Type: |<ngne> j

Sl IU 3: S afety Partrer Slot: <hones

Create | IE:'\HSLDgiH R000MProjects Browse. .. |

Figure 20 Select PLC type and name the program

27

% RSLogix 5000 - first_program [1769-L23E-QBFC1 18.11]

File Edit ‘Wiew Search Logic Communications Tools Window Help
IEECEEREEEE] B NEE = RETET]) s
OFfline [, ™ RUN E Path: | <none> ﬂ
Mo Forces » FDK @
No Edits - K1 =20 =0 N e e R B
<|>|\ Favorites 4 Add-On A Safety A Alarms £ Bt A TimeriCourter A In

[23 Contraller Fault Handlsr
“[2 Power-Up Handler
5] Tasks
E@ [MainT ask,

Figure 21 Select the path to the PLC

f&: RSLogix 5000 - first_program [1769-L23E-QBFC1
E File Edit view Search Logic Communicaktions To

a|=d| 8| &8«

Offline 1. I RUN e

Mo Forces b F ak. qP
BAT

Mo Edits = =

I u

- [[3 Controller Faulk Handler
- [[3 Power-Up Handler

EI'EJ Tasks
L——_I% MainTask
EIE& MainProgram

g e]

-8 MainRoutine

Figure 22 Open the MainRoutine

To write a PLC program simply pull the instructions from the instruction
bar onto the chosen place on the rung. Each line has to have at least one
output instruction (Figure 23) these are at the right side of the rungs. Once
you place an input or output instruction you have to assign a tag to it. This

28

tag will define what is connected to it this can be a physical input or
output. It can also be a bit in memory or a number among many things. We
will go into these in more detail later, but first place the output energize
instruction at the end of the first rung. Once it is there right click on the
question mark above it and select New Tag (Figure 24) or press ctrl+w
(Figure 25). A new window pops up, here we can give a name, a type and
select if this will be a base tag or an alias for something. To connect this
output to a physical output select alias and select the physical output you
wish to activate. If this value will not have a physical connection select
base. Right now we want this to be the first physical output so we will select
that (Figure 26) and name it "outputl". Remember as in most programming
languages the first is labeled with 0. Once you have done this the program
is ready to be downloaded to the PLC, you can also verify the program to see
if it contains semantic errors (Figure 27).

R e (D T O
L
|+ |\ Favorites {Adeon A M CBT A Tmeriourier A TRAOWRR A Compare A Compuiemiatn A Movelogeal R TTeffiss. A FIsinft A Seausncer A Frogram Cortral A For?

TEI i a e[| e o o o]]
°

Figure 23 Put the output energize instruction at the end of the first rung.

Mew Tag...) | vy
I3 1on Chrl+x
] Copy Instruction Chrl+C
2 Faste Chrl+y
Delete Instruction Del
Add Ladder Element... Alt+Ins

Edit Main Operand Description Ckrl+D

Save Instruckion Defaults

Clear Instruction Defaults

Toqggle Bit Chrl+T
Force On

Farce OFF

Remave Farce

Go To... Chrl+a
Instruckion Help Fl

Figure 24 Create a New Tag

29

New Tag x|

Mame:

Description: Cancel |
Help |

Type:

Aliaz For:

Data Type: IBDDL |
Scope: IEE I ainProgram j
External IH APt j
Acoess gadanIE

Style: I Decimal j
[” Constant

I~ Open Configuration

Figure 25 Name the tag and select its type

x
I arme: Iﬁ Ok

Description: ;I Cancel |

Type: IAIias Yl Conmector... |

Alias For: ILocaI:Z:D.Data LI
Data Type: I\'_"‘ j Shou: IA" Tags j
|Name | |Data Type |De =
Scope: " BO0L
Esternal ﬂ [-Locak1:C ABEmbedded...
Access ﬂ [Locatk1 ABEmbedded...
Style: ﬂ [-LocakzC AB:Embedded...
ﬂ [-Locak 21 AB:Embedded...
I” Constant ﬂ [=Localz0 AB:Embedded... -
I | Gipen Cort L | ocal:2:0 Data =[INT
— ﬂ oP1 | 2|34 |5|6]|T ABEmbedded...
ﬂ 9 (10(11 |12 (13|14 |15 ABEmbedded... -
Controller
| Frogram

Figure 26 Select what the tag is an alias for

30

% RSLogix 5000 - first_program [1769-L23E-0QBFC1 18.11]* - [MainProgram - MainRoutine*®]

E Fle Edt Wew Search Logic Communications Tools ‘Window Help

Bl=al| 8| S| =]

NS alal|[:

Offline

Mo Forces

Mo Edits Upload. ..
I > -

@ ™ RUN

Go Online

oller Organizer B e
=53 ntroller fir Aun Mode
& Contralle
Test Mode
Clear Faults
B8 MainTas G To Faulks
E| Mair
& | Controller Properties
& MainF.outineg

Lq}ﬂ

e |

4 Alelie] sl olelo]
4| v |3 Favorites A Sddon & Rerms A Bt A Timerfourier A

]
- EX]

e E S e

(Ercl)

Figure 27 Verify and download the program

Once you press download a series of prompts will appear asking you
if you want to change modes. Change to RUN mode at the end and select
Go Online this will enable you to see the program in action and is your
main tool for debugging the programs you write. However you can only
modify the program when it is Offline. Next let's add a condition to the
beginning of the line. No conditions for a branch is the same as always true
it will always execute. The first condition we will look at is Examine If
Closed (XIC) (Figure 28). This will be true if the tag assigned to it holds the
value of true otherwise it is false. Drag the symbol to the beginning of the

rung (Figure 29).

% RSLogix 5000 - first_program [1769-L23E-0BFC1 18.11]* - [MainProgram - MainRoutine]
E Fle Edt Yiew Search Logic Communications Tools Window Help

a|=(E| & &8 <[]

- Aalal E e

Offline [, ™ RUN
Mo Forces k. ::DK

BAT
Mo Edits =y E o

Controller Organizer

=1-E5 Contraller First_program
o L@ controller Tags
w27 Controller Faulk Handler
03] Pawer-Up Handler
=-E5 Tasks

]
L@J
O | «|» [Favorites £ Zdd-on A Earms A BT A T

F'ath:|<none>
4 I—||h:r||la+|@-m-|~(}|{u}|ﬂ}|

* X

Figure 28 Examine If Closed

31

H e [| A [|

[
|+ |\ Favorites { Eddon £ Aams A BT A Tmerourter & oot f Compere A, CompieRath A Woverogeal A Flemise. A FIerhil A Seouencer A Program Cordral A For

e e [e e

2

outpLt1
<Local 2:0.Data 0=

o
L

(Enet)

Figure 29 Place Examine If Closed

Finally add a tag to the condition and set it to be the alias for the first input
similarly as you did with the output (Figure 30).

(= = N e R R B

i
v I Favorites £ Fddon A Eerms A BT A TmerConrter A toutad A Compare J CompeRielh A Movelogeal A FIeffes. & FIehm f Seauencer A Program Corral £ For

FLocaIﬂ:\ Data.Dq
0 JE
— 1 1

(End)

output
=Locak 2.0 Data 0=

Figure 30 Add a tag to Examine If Closed, the condition is not green
indicating that it is false

Once you have downloaded the program to the PLC and set it to RUN mode.
The controller will work according to the truth table in (table 2).

Table 2 The truth table for the program

inputl | outputl

0 0]

1 1

The next condition we will look at is Examine If Open (XIO) (Figure 31). This
will be true if the tag assigned to it holds the value of false otherwise it is

false. Drag the symbol to the beginning of the rung in place of XIC (Figure
32). Finally assign the same tag of inputl to it (Figure 33).

32

Fath: I £NONEs: "'I fgl -

o et 1G]] o)

-

4| Irl"'uL Favorites A Add-On Elarmz A Bt A Timerfcourder A Nk

Figure 31 Examine If Open

(SN =) = N A KA EOA K I
| » |\ Favorites {Add-On f Alams £ Bi & TmeriCounter & InputiOuwpt A Compare §_Compulemfan & Movedogicsl A Flsffisc. & Fls/shil { Sequencer & Program Corrol £ Ford
output!

=Local2:0.Data 0=

_/

(Ened)

Figure 32 Place Examine If Open

(SN N R R R R R 2
| » |\ Favorites 4 Edd-0n & Aarms £ Bt f TmeriCounter { InputiOupt A Compare & _Compuismiain R Moved opioal f FleMisc A Fle/snii A Seouencer A Program Cortrol & Ford

output!
=Local 2:0.Data 0

Figure 33 Add a tag to Examine If Open, the condition is green indicating
that it is true

Once you have downloaded the program to the PLC and set it to RUN. The
controller will work according to the truth table in (table 3).

33

The Figure 34 shows a review how inputs (XIO and XIC) and outputs (OTE)
respond during a scan.

Table 3 The truth table for the program

inputl | outputl
0 1
1 0]

Physical Input

evices

(normally
open) to

NO inputl
(normally
closed) to
NC input2

PLC

ooom
oooo
oooo
oooo

adule

npuht

outputl
ocal:2:0.Data.0>

inputl

outputl
<Local:]:1.Data.0> <Loca

OTE

1:2:0.Data.0>

[
XIc

input2

<Local:1:I.Data. 1> <Loc:

outputl
al:2:0.Data.0>

OTE

t

>

XI10

input2

<Local:1:I.Data. 1> <Loc:

outputl
al:2:0 Data.0>

OTE

e

=
XIC

OTE

Push Buttons

Physical Output
Devices

Indicator

Lamp

W

Figure 34 Review how inputs (XIO and XIC) and outputs (OTE) respond
during a scan.

The next condition we will look at is a logical AND. To create a logical AND
between two or more conditions simply place them in series (Figure 35). As
with the logical AND when all the conditions are evaluated true (all of them
are green) the output instruction(s) will activate. Table 4 shows the truth

table for the program on Figure 35.

Contactor

34

| ot Lt bt | v [[0 | A
|+ |\ Favorites A#deOn A merms f Bt A TmeriCounter A INpUtOMPEE A Compare A o

" & MovelLogical & FileMisc. X Fileishil_A_Sequencer A_Program Cortrol & For

output!
=Local: 2.0 Data 0=

Figure 35 A logical AND condition between two conditions

Table 4 The truth table for the program

inputl input2 | outputl
0] 0] 0
0] 1 0
1 0] 0
1 1 1

The next condition we will look at is a logical OR. To create a logical OR
between two or more conditions simply place them in parallel using the
branch instruction (Figure 36). Place a branch instruction on the rung
(Figure 37) and place the conditions on the branches (Figure 38). As with
the logical OR when at least one of the conditions is evaluated true (one of
them is green) the output instruction(s) will activate. Table 5 shows the
truth table for the program on Figure 38.

g Path: | <none: - ﬂl
| e ESIROIERY
-

ILI‘\ Favorites 4 Add-On A4 Alarms A Bt A TimerCourter £ Ing

Figure 36 The branch instruction

35

(= = R e R A
IL' Favorites Addid-0n Alarms Bit Timer/Counter Input/Output COMmpare Computehath

| 1] SB[[s] s & [o] o]

]

I

MorveLogical Filemisc. File/Shift SEGUencer Program Control For!

Figure 37 Place the branch instruction

R = = R e K R
| Favorites {EodOn £ Aerms £ Bt £ TmeriCourter & InpuiOuipdl A Compare & Compuishiatn f Wovelogical £ FleMisc A Fiefsnit A Sequencer A Proorsm Comtol £ For

output!
<=Local1: Data 0= <Local 20 Data 0=
o JF

1

input2
<Local 111 Data 1>

Figure 38 A logical OR condition between two conditions

36

Table 5 The truth table for the program

inputl input2 | outputl
0 0 0
0 1 1
1 0 1
1 1 1

Using the same branch instruction you can activate more than one output
instructions at the same time.

This brings us to one of the most important circuits in automation the self
holding circuit (Figure 39).

H = = dE 5 Lk AU »
5 [\ Favorites &0 { Marms & BT A Twmerourter [npdioud A, Compare A, Compuetietn { WMavelogial & FIehee. A il & Sequencer f Program Cortrdl A Farl

latch unlatch outpt

0 5 IE
output

Figure 39 The self holding circuit

The self holding circuit is a circuit that has 2 inputs, feedback and an
output. Since the PLC works in cycles the feedback is the previous state of
the output. Latch sets the output to true and the feedback ensures that the
output stays true. Unlatch resets the output to false by cutting the off the
flow from the latch and the feedback. Table 5 shows the truth table for the
self holding circuit.

37

Table 6 The truth table for the self holding circuit

Latch | Unlatch Currentoutput New oufput
0 0 0 0
0 0] .
0 1 0 0
0 1 1 0
1 0 0]
1 0 1 5
1 1 0 0
1 1 1 .

This configuration is used so much that there are two output instructions
that save time in its implementation. These are called Output Latch (OTL)
and Output Unlatch (OTU).

These are the basic conditions and configurations, there are many more
conditions and output instructions that we will get into later.

2.1.2. Memory Bits

As with most PLCs there are some tags that serve a special purpose,
these tags do not turn green even when they are active. The main one is the
first scan flag, which is active for only the first cycle after you switch the
PLC to run mode. Here is a list of these flags.

e S:FS
The first scan of the program

¢ S:MINOR

38

This is set to true when the PLC has a minor fault
S:v

This is set true when the value you are trying to store cannot
fit into its destination because it is eider greater than the maximum
storable value or smaller than the minimum storable value. Each
time this happens the PLC also sets S:MINOR true.

S:Z
This is set true when the instructions destination value is O.
S:N

This is set true when the instructions destination value is
negative.

S:C

This is set true when an arithmetic instruction causes carry or
a borrow outside of the data type.

2.1.3. Exercise I: Garage Door

Let's examine a real world problem namely a garage door system. On

Figure 40 we see the system in question. Figure 41 shows the solution.

39

LSo
LOWer lelt

Normayyy Open)

Figure 40 Garage door system

The inputs are shown in table 7.

40

Table 7 Inputs of the garage door system

{smr‘gchilr)lg elllem(;[ntss) Name Type Identifier
Pushbutton Open NO Local:1:I.Data.0
Pushbutton Close NO Local:1:I.Data.1
Pushbutton Stop NC Local:1:I.Data.2
Limit switch LS1 NC Local:1:I.Data.3
Limit switch LS2 NC Local:1:I.Data.4

The outputs are shown in table 8:

Table 8 Outputs of the garage door system

ggflglel; Name Identifier
Contactor Motor UP Local:2:0.Data.O
Contactor Motor DOWN | Local:2:0.Data.1
Indicator lamp AJAR Local:2:0.Data.2
Indicator lamp OPEN Local:2:0.Data.3
Indicator lamp SHUT Local:2:0.Data.4

The task we are charged with is the following:

Once you press the OPEN button the door will go up until LS1
signals that the top has been reached.

41

e Once you press the CLOSE button the door will go down until LS2
signals that the bottom has been reached.

e You do not have to keep pressing the buttons to keep the selected
action active.

e Pressing the STOP button halts the current action.

e The Motor UP switch and Motor DOWN switch can't be active at the
same time.

e The lamps signal the current state. OPEN when the door is fully
open, SHUT when the door is fully shut and AJAR when the door is
not moving in eider direction and it is not in eider end position.

open stop motor_dovn Is1 miator_up
=Locak1:| Data 0= =local1:| Data 2= =Local 2:0 Data 1= =Local:1:| Data 3= =Local 20 Data 0=
0 JE JE IE JE

motor_up
=Locat 20 Data 0=

close stop mitor_up 152 motor_cown
=Locak1:| Data 1= =local1:| Data 2= =Local 2:0 Data 0= =Local:1:| Data 4= =Local 20 Data 1=
1 JE JE IE JE

motar_ciown
=Locat20.Datal=

e

I=1 open_lamg
=Local1:| Data 3= =Local 20 Data 5=
2 JE

122 shut_lamp
=Local 1| Data 4= =Local 20 Data 4=

3 JE

meter_up mator_down Is1] dr_lamp
=Local 2 0 Date 0= =Local 2:0 Dete 1= =Local1:lData 3= <Local1: Data 4= =Local 20 Data 2=
4 3 E 3 E = E cll=

Figure 41 Garage door system PLC program

When you are writing PLC programs it helps to follow this simple
convention. Each line should have 1 output instruction that controls a
physical output. When using the Output Energize (OTE) instruction do not
use the same tag more than once in a program. Since the last one will
overwrite the previous ones. All conditions that influence this output should
be used as conditions for it. This may look difficult at first, but used
properly they make programs clearer to see through.

Line O is responsible for opening the door. It is a self holding configuration.
Thus if the output is activated in a cycle it will be activated in the next one.
To deactivate this output you need at least one condition in series that can
break the condition. Here we have 3 the Stop button, LS1 and the Motor

42

DOWN. The Stop button is NC this means it is always active except when
pressed. When you it is pressed the output is made false. The same thing
happens with LS1. The Motor DOWN is a bit different. It is there to make
sure Motor UP can't be activated if Motor down is active. This is called
cross latching.

Line 1 is very similar to line 0. Line 2 activates the OPEN lamp when LS1
gives a signal. Line 3 activates the SHUT lamp when LS2 gives a signal.
Line 4 activates the AJAR lamp when the motor is not going up and it's not
going down and LS1 is not active and LS2 is not active. In other words
when the motor has stopped and is not in the end positions.

2.1.4. Exercise II: Silo
Figure 42 shows the silo system. Figure 43 shows the solution.

@ || Start
@ || Stop

Solenoid

Figure 42 Silo system

The inputs are shown in table 9.

43

Table 9 Inputs of the silo system

{sml:clchigg ellleméntss) Name Type Identifier
Pushbutton Start NO Local:1:I.Data.O
Pushbutton Stop NC Local:1:1.Data.1
Photo swich Proxy NO Local:1:1.Data.2
Level sensor LS NO Local:1:I.Data.3

The outputs are shown in table 10.

Table 10 Outputs of the silo system

(?CUVEEEJ Name Identifier
Contactor Motor Local:2:0.Data.O
Contactor Solenoid Local:2:0.Data.1

Indicator lamp Run Local:2:0.Data.2
Indicator lamp Fill Local:2:0.Data.3
Indicator lamp Full Local:2:0.Data.4

The task we are charged with is the following:

e When you press the Start button the Run lamp turns on and the
conveyor starts.

¢ When the box reaches the Proxy sensor the conveyor stops.

44

e When the box stops the Solenoid activates and starts filling the box.

e While the box is being filled the Fill lamp turns on.

e When LS (level sensor) indicates the box is full deactivate the

Solenoid to stop the filling.

e While the level sensor indicates the box is full the full lamp turns on.

e When the box is full the conveyor starts again and brings the next

box and the process starts again.

e When you press the Stop button the process stops. When you press
the Start button the process continues where it was stopped.

start
=Lacal 11 Data 0= stop_bit
3

run_lamp
<Local 20 Data 2=

0 1E IE
run_lamp
=Local 20 Data 2=
—
start

LocaM \Data1 LocaH \Dmao

stop_hit

FE IE
stop_kit

run_lamp
LosmlZ0Daia2 box stop_bit

mitor
=Local 20 Data 0=

JE
VE
lewel_zensar
b Lnns\ 1:1 Data 3=

level_sensor
hox ansl1 IDats 3 Stnp hﬂ

3 —3E 3 E 3 E

<=Local2:0 Data 1=

salenoid

level_sensor
<Locel1:1Data 3= stop_kit

Till_lamp
=Local: 20 Data 3=
L

full_tamp
<Local 2 0 Data.d

aE s
4 1k FE

oy
=Locatl:lDeta 2= storage?

JE rons
5 1 | { ONS |

box

lervel_sensor
=Local 1 | Data 5> storagel
r 1
5 JE {ons]

A —]

box

Figure 43 Silo system PLC program

Ur—

In this program there are some instructions that are new to us let's examine
these. Line 1, 5 and 6 contain the instruction One Shot (ONS). This
instruction detects the rising edge of the conditions before it and needs a
storage bit. To detect the falling edge of a condition simply negate it. Since it
detects rising edges its output instruction will only activate for one cycle.
Line 5 contains the output instruction output latch (OTL). It works similar

45

to output energize (OTE) except once activated it sets the output high and
keeps it high. Line 6 contains the complement to this output unlatch (OTU).
When the condition to output unlatch become true it sets the output low.
These two work similarly to a self holding circuit.

Let's analyze the program:

Line O controls the Run lamp. When the Start button is pressed the Run
lamp becomes active. When the stop bit is active it becomes inactive.

Line 1 controls the stop_bit. The stop_bit is activated by the Stop button.
The Start button deactivates the stop_bit. The stop_bit is used in lines O, 2
and 3 to disable those outputs when it is active.

Line 2 controls the Motor. Here we use a bit labeled box. When we are
running and there is no box and when there is a box and it is full the Motor
for the conveyor will run. The stop_bit deactivates this output.

Line 3 controls the Solenoid valve and the Fill lamp. These have to work at
the same time. They turn on when there is a box and the level sensor
indicates it is not full. The stop_bit deactivates this output.

Line 4 controls the Full lamp. It becomes active when the Level sensor
indicates the box is full. The stop_bit deactivates this output.

Line 5 latches the bit that indicates there is a box. The rising edge of the
Proxy sensor latches the box bit. This is not deactivated by the stop_bit.
We need it unchanged to keep our position when we restart the machine.

Line 6 unlatches the bit that indicates there is a box. The falling edge of the
Level sensor unlatches the box bit.

2.2, It's PLC Time!

With the instructions we have learned till now we can deal with something
instantly, but we can't do anything that is time related. To handle events
that require timing the PLC uses timers. Timers have a time base which in
most cases is millisecond based. The smallest time it can measure is 1 ms.
Some PLCs have timers that have a time base of 10, 100, 1000 ms. In this
section we will learn about the different types of timers and how they are
used.

2.2.1. Types of Timers and Their Uses
There are 3 types of timers you can use in RSLogix 5000 Timer On Delay
(TON), Timer Off Delay (TOF), Retentive Timer On Delay (RTO). Each

46

timer has a tag, preset value (PRE) and accumulator (ACC). The preset
value holds the value in milliseconds for how long the timer should wait.
The accumulator holds the value in milliseconds for which the timer was
active. The timer also has bits that indicate its state. These are the enable
bit (EN), done bit (DN), timing bit (TT).

Timer On Delay (TON). The operation of a timer on delay is depicted on
Figure 44. The timer delays the rising edge of the input signal by the preset
value, if the input signal is active for the preset time. The enable bit (EN) is
active while the input signal is active. The timer timing bit (TT) is active
while the timer is active and has not reached the preset value. The done bit
(DN) is active while the input signal is active and the timer reached the
preset value. Once the input signal is gone the timer resets.

RUNG I ‘ RS ‘
CONDITION IN 0 : L .
TIMER ENABLE e : L]—I
BIT (.EN)] N I S
TIMER TIMING = :
BIT (.TT) 1 1 L ‘

TIMER DONE S : P ON delay
BIT (.DN) L ‘ L ‘]

13

T [Z] preset value (.PRE)

TIMER ACCUMULATED
VALUE (.ACC) 2

0 3 6 9 13 14 17 1119 Tls.

Figure 44 Timer on delay

Timer Off Delay (TOF). The operation of a timer on delay is depicted
on Figure 45. The timer delays the falling edge of the input signal by the
preset value, if the input signal is inactive for the preset time. The enable bit
(EN) is active while the input signal is active. The timer timing bit (TT) is
active while the timer is active and has not reached the preset value. The
done bit (DN) is active while the timer has not reached the preset value.
Once the input signal returns the timer resets.

47

RUNG Ho |—\] ; Lo 1
CONDITION IN ob— 1 L | ‘ | ; | .
TIMER ENABLE Do ,—\ — e P —
BIT (.EN) —_— — | : | : | ‘ |—
TIMER TIMING — _— —_—
BIT (.TT) L o : [
o OFF delay : o
TIMER DONE —
BIT (.DN) 3 L
Tlsla = = = Lo P
4 | presetvalue (PRE) - .. . L
TIMER ACCUMULATED g A S : o :
VALUE (ACC) = 2
! ~
0 5 10 15 20 TIs]

Figure 45 Timer off delay

Retentive Timer On Delay (RTO). The operation of a timer on delay is

depicted on Figure 46.

The timer delays the rising edge of the input signal

by the preset value, if the input signal is active for the preset time. The
enable bit (EN) is active while the input signal is active. The timer timing bit
(T'T) is active while the timer is active and has not reached the preset value.
The done bit (DN) is active while the input signal is active and the timer
reached the preset value. Once the input signal is gone the timer does not

reset.

48

RUNG
CONDITION IN 0

TIMER ENABLE
BIT (.EN)

RUNG CONDITION THAT
CONTROLS RES INSTRUCTION

=2

TIMER TIMING
BIT (.TT)

TIMER DONE Lo f S - —
BIT (.DN) : ‘ Lo

L7 L | L

e

T [i] preset value (.PRE)

TIMER ACCUMULATED 3
VALUE (.ACC) 21
0 5 10 15 20 TIs

Figure 46 Retentive timer on delay

Next let's see how to use timers. Timers can be found under the
Timer/Counter tab of the instruction bar (Figure 47). We will examine the
other instructions later. Now add the TON instruction to the rung. Figure
48 shows the field for the tag. First add a tag to the timer. Next set the
preset time (Figure 49).

4 H Il = TON TOF RTO CTU CTD R

< 2 |y Favorites A Add-On A Alarms

Figure 47 The Timer/Counter tab

H Ik =l 71O ToF RTO CTU CTD RES »

> Favorites £ Add-On A Alarms A Bit A Timer/Counter InpLtiOutput Compare ComputeMath A MovelLogical A FlleMise, A File/Shitt T Sequencer A_Program Cortral A F

TON

Ti 74—
Tlgr 7| é
Pre b —

Accum 7

o

LRI)

Figure 48 Set the timer tag

49

H ol l&= ToM TOF RTO CTU CTO RES r

> Add-0n Timer/Counter Input/Output Computetath MovelLogical FileMisc FileShift SECUENCE! Program Control

ToH
Timer On Delay HCEN

Timer,
pre mey
Acc

a

Figure 49 Set the preset time

Let's add a condition to this line that will reset the timer once the
preset time is reached (Figure 50).

o = R AR A R (A (2 4

Alarms Bit Timer/Courter Impiut/Output Compare Compitetdath Movel ogical File iz File:Shift SefuUENCEr Program Cordrol Foi
I p! I I ¢l &l]

timer1 DM

==

Timer On Delay HEN
Timer timer1
Presst 1000
Accum 0

N —

4
L

Figure 50 Add reset condition for the timer

To access the status bits and values of the timer simply use the tag name
add a dot "." and the field name {PRE, ACC, EN, DN, TT}. Make sure that
the field you use is applicable to the instruction. You can't use {PRE, ACC}
on bit instructions. A common application of timers is the generation of a
square wave. Figure 51 shows a program that generates a square wave with
a 50% duty cycle and a period of 1s. The program works as follows. Timer
starts timing since its condition (not timer1.DN)is true. Once timer reaches
the preset time timer.DN becomes active. Timer.DN starts timerl. Once
timerl reaches the preset time timerl.dn becomes active. This resets both
timer and timerl. The process repeats endlessly.

(== R R (VAR (1SR 2 »
>| Favorites Add-On_ A Alarms £ Bit A Timer/Courder £ InputfOutout CompLtemath Marvelogical Filgitisc. FileShift SerUencer Program Control
timer1 DM TON
il H=E Timer ©n Delay B —
Timer timer
Preset 500 &{0N—
Accum 0%
timar DN TON
1 —F Timer ©n Delay N —
Timer timer1
Preset 500 €~ DN)—
Accum 0«

Figure 51 Square wave generating program

50

2.2.2. Exercise III: Traffic Control

In this exercise you will have to program a traffic light at a crossroad
with separate lights for the pedestrians. Figure 52 shows a time diagram of
how the lights at the crossing are supposed to work. The lights for the
pedestrians turn on the next green light for the appropriate direction after
its button has been pressed. Figure 53 shows the traffic control system.
Figure 54 and Figure 55 show the complete program.

cycle

P2
|\

»

| >
104 Time [s]

ot
N
)]
a1
N
~
(o]

Figure 52 Time diagram for traffic control system

51

Figure 53 Traffic control system

The inputs are shown in table 11.

Table 11 Inputs of the traffic light system

I n p u t s

(switching elements) Name Type Identifier

Pushbutton Crossing Buttonl| NO Local:1:I.Data.O

Pushbutton Crossing Button2| NO Local:1:I.Data.1

The outputs are shown in table 12.

52

Table 12 Outputs of the traffic light system

gé&glel; Name Identifier
Traffic Light Red1 Local:2:0.Data.O
Traffic Light Yellow1 Local:2:0.Data.1
Traffic Light Greenl Local:2:0.Data.2
Traffic Light Red2 Local:2:0.Data.3
Traffic Light Yellow?2 Local:2:0.Data.4
Traffic Light Green?2 Local:2:0.Data.5
Traffic Light Walk1 Local:2:0.Data.6
Traffic Light Walk?2 Local:2:0.Data.7

The task we are charged with is the following:

Redl, Red2, Yellowl, Yellow2, Greenl, Green2 should follow the
time diagram on Figure 52.

Walk1 should only be active after Crossing Buttonl was pressed.

Walkl should be active the next time Greenl is active for the
duration that Greenl is active.

Walk2 should only be active after Crossing Button2 was pressed.

Walk2 should be active the next time Green2 is active for the
duration that Green2 is active.

53

H kel =l A+ LR e 4
3 |\ Favorites 4 Addon X Amms A Bt A Tmericounter A MpLbOWipdl £ Compare A Compulehisth A Mowelogcal A Fiemdse. A Flersnil A Seauencer X Program Cortrol A Foi
reditimer2 D TON——
[1} I E Timer On Delay HCEM —
Timer reditimert
Preset 13000 -0h—
Accum 0 €
reditimer! DN TN ————
1 —F Timer On Delay En >—
Timer greenttimer
Preset 000 e[-{DH3—
Accum 0
greenitimer. DN TN
2 JE Timer On Delay HCEM—
Timer yelowtimer
Preset 4000 €D >—
Accum 0 #
yellowrtimer DM TON——
3 JF Timer On Delay HEM 37—
Timer reditimer2
Preset 1000 €-{DN—
Accum O
red2timer.dn TN ————
4 e==3/F Timer On Delay FoEn > —
Timer green2timer
Preset 8000 &~ DN>—
Accum 04
green2imer dn TOR
5 JF Titmer On Delay HCEM —
Timer yello 2timer
Presst 4000 & DN—
Accum 0 €
yellow2imer. dn TN ————
B JE Timer On Delay En >—
Timer redAimer
Preset 14000 eDN—
Accum 0
yellow] crossing_button?
<Local 20 Data 1= <Local1: Data = crossing_button1_pressed
7 1E JE L
greent
<Local 20 Data.2=
red]
crassing_button’_pressed <Local2:0 Data 0= walk_bit
e I) a
crossing_bution? .
Local11Dala 0 crossing_button! _pressed
vellow
<Local2.0.Data 1= walkl_bit
s E]
velow2 crossing_buttan2
<Local 20 Data 4= <Local1: Data 1= crossing_button2_pressed
10 JE 1E 0
green2

<Local 2.0 Data. 5=

Figure 54 Traffic control system solution

54

red2
crossing_button2_pressed <Lacal 20 Data 3= walk2_bit
1E

" EA JE s
crossing_button?2
<Local 1 Data.1> crossing_button2_pressed

yellow?2
=Local:2:0.Data.d= walk2_hit
BN

12 JF W
redt
reditimert # <Locak2:0.Data 0=
13 1E
r
recitimer2 ft
yellowd
yellowtimer tt =Locat 20 Data 1
w o —3E
greent
greenttimer it =Locak 20 Data 2=
5 —E
red2
redz2timer it =Locak 20 Data 3=
i — ¢
yellow?
yellow 2timer it =Locak 2.0 Data 4=
i 3
green2
green2timer it =Locak 20 Data 5=
i 3t

greent walk
<Local20Dsta. 2= walk _bit <Local 20.Data 5=

19 Jk 1t

gresnz walk2

=Local2:0Dsta 5> walk2_bit =Local 20 Dats 7>
20 ENd 1
Ean a0

Figure 55 Traffic control system solution cont.

Let's analyze the program. Lines 0-6 has two sets of chained timers. The
first timer chain is for the outputs Redl, Yellowl, Greenl. The second
timer chain is for the outputs Red2, Yellow2, Green2. These two chains
are independent of one another.

Lines 7-9 hold the logic for Crossing Buttonl. We can press the Crossing
Buttonl while the light is red, yellow or green. When it's yellow or green we
set the crossing buttonl_pressed bit. As the name suggests this bit stores
the information that Crossing Buttonl was pressed. If we press the button
while the light is red or we have already pressed the button before we set a
bit called walkl bit we also reset crossing buttonl_pressed. The
walkl bit holds the information that we need to turn on the Walkl lamp
the next time Greenl is lit. Line 9 will reset the walkl bit on the next
Yellow lamp. We do this to make sure that once we press the crossing
button the walk lamp will only stay active for one cycle.

Lines 10-12 are similar to lines 7-9. The only exception is they are for the
Walk2 lamp.

55

Lines 13-20 control the outputs. As we discussed it is good practice to leave
all the outputs to the end and only work with bits till then.

Line 13 controls the Red1 light. This can be active on the beginning or the
end of the cycle. So we use an OR condition to check that the red1timer2
is timing or the red1timer2 is timing.

Lines 14-18 control the lights Yellowl, Greenl, Red2, Yellow2, Green2
respectively. These need to be active while their timers are timing.

Line 19 controls the Walk1l light. This will be active when both the Greenl
light and the walk1_bit is active.

Line 20 controls the Walk2 light. This will be active when both the Green2
light and the walk2_bit is active.

2.3. Dare to Compare

As we have seen timers basically hold numbers. Until now we only used the
DN, EN, TT bits of a timer. You can't use the ACC, PRE numbers in a
ladder diagram since you need logical TRUE or FALSE values. To use these
values first we need to convert them. This is where comparison operations
come in.

2.3.1. Comparison Operators
The comparison operations are conditions and are used the same way. They
can be found under the Compare tab. These operations are:

e EQU - equal (Figure 56) is TRUE if source A and source B have the
same value. Otherwise it is FALSE.

— EQU ———

Equal

Source A ?
??

Source B ?
??

Figure 56 EQU instruction

e NEQ - not equal (Figure 57) is FALSE if source A and source B have
the same value. Otherwise it is TRUE.

56

— NEQ ——
~ | Not Equal

Source A ?
??
Source B ?
??

Figure 57 NEQ instruction

LES - less than (Figure 58) is TRUE if source A is less than source B.

Otherwise it is FALSE.

—— LES —
Less Than (A<B)

Source A ?
?
Source B ?
??

Figure 58 LES instruction

GRT - greater than (Figure 59) is TRUE if source A is greater than

source B. Otherwise it is FALSE.

—— GRT —

Greater Than (A>B)

Source A ?
?
Source B ?
L

Figure 59 GRT instruction

LEQ - less than or equal (Figure 60) is TRUE if source A is less than
or equal to source B. Otherwise it is FALSE.

57

I LEQ -
Less Than or Eql (A<=B)

Source A ?
o
Source B ?
7

Figure 60 LEQ instruction

GEQ - greater than or equal (Figure 61) is TRUE if source A is greater
than or equal to source B. Otherwise it is FALSE.

—— GEQ——
Grtr Than or Eql (A>=B)

Source A ?
??
Source B ?
??

Figure 61 GEQ instruction

LIM - limit test (Figure 62) is TRUE if the test value is greater than or
equal to the low limit value and less than or equal to the high limit

value. Otherwise it is FALSE.

— LIM
Limit Test (CIRC)
Low Limit ?
??
Test ?
??
High Limit ?
??

Figure 62 LIM instruction

58

e CMP - compare (Figure 63) is TRUE if expression typed in is TRUE.
Otherwise it is FALSE.

—— CMP———

Compare
Expression ?

Figure 63 CMP instruction

e MEQ - masked equal (Figure 64). Take the binary value of source,
use the AND operation with the mask. If the resulting number the
same value as the one in the compare field masked equal will be

TRUE. Otherwise it is FALSE.

- MEQ—
] Mask Equal -
Source ?

o
Mask ?
o
Compare ?
o

Figure 64 MEQ instruction

2.3.2. Exercise IV: Traffic Control Revisited
Let's revisit the precious exercise. This time we will use only one timer.
Everything else will stay the same. Figure 65 and 66 show the complete

program.

59

H ol &GP LIn MER EGW NEGL LES GRY LER GER 3
Favortes n Alarmms imet SCouniter InputiCLtaut Compare A Computemisth 1 MovelLogical A FileMise. A FilefShift] Seguencer A4 Program Cortrol 4 Fo
timer1 dn TON
] =='F Timer On Delay FeEn—
Timer timer1
Preset 26000 & DN —
AcCUm 04
M — rech_green2_hit
1 —— Limt Test (GRS
Lawe Limit o

Test timer1 acc
0«
High Lirmit 7998

- M— red_yellows2_bit
2 |—— Limit Test (CIRC)
Low Limit 5000

Test timer1 acc
04
High Limit 11993

Lt redl_red2_hit1
3 1 Limit Test (GRS
Lowe Limit 12000

Test timer1 acc

s

i}
High Limit 12993

Iy oresnt_red2_bit
4 —— Limit Test (CIRC)
Low Limit 13000

Test timer1 acc

s

i}
High Limit 20993

v yellowe! _red2_bit
5 —— Limit Test (CIRC)
Low Limit 21000

Test timerl.acc

i}
High Limit 24993

Ih: redl _red2_bitz
& ——1 Limt Test (CRC)
Lawe Limit 25000

Test timerl.acc

i}
High Limit 28000

yellowel crossing _button
=Local: 2.0 Data 1= =Local1:1 Data 0= crossing_button _pressed
7 IE JE @
Jr Jr
greem!

<local 20 Data 2=

rett
crossing_button _pressed <Locat 20 Data 0> walk1 _bit
8 JE JF 0

crossing_button

<Locat1:| Data 0= crassing_button1_pressed

Figure 65 Solution to the problem

60

yelow!
<Local2:0 Data 1= walkl_bit
1E
a 1E U
vellow? crossing_button?
=Local 2:0 Data 4= =Local 1| Data 1= crossing_button?_pressed
10 1E id i
ar JC
oreenz
<Local 2.0 Data. 5=
red2
crossing_button2_pressed =Local: 20 Data. 3= wealk2_it
1 IE IE g
Jr Jr
iziz‘ﬂgl—g‘;‘“:ﬁ crossing_button2_gressed
yellow2
<Local 2.0 Data.d4= walk2_bit
1E
12 = I
redl
red1_green2_bit <Local 2.0 Data 1
13 1t
red? _yelow2_bit
JE
Jr
red1_red2_bitl
==
0
red] _red2_hitt
yellowet
vellow! _red2_hit <Local 2.0 Deta 1 =
14 J1F
Jr
areent
greend _red2_hit <Local 20 Data.2=
15 1 E
Jr
red2
red!_red2_bit1 =Local 2:0 Data 3=
16 ==
0
greend _red2_bit
IE
Jr
vellow! _red2_it
JE
Jr
vedl_red?_bit2
yellove2
redt _yelow2_bit <Local 20 Data.d=
17 J F
Jr
green?
red _green_hit <Local 20 Data.ge
18 L
Jr
greent walk1
=lLocal 2.0 Data 2> walk _bit <lLocal 2.0 Data fi»
19 1E 1E
ar r
green? walk2
=Local 2.0 Data 5= walk2_bit =lLocal 2.0 Data 7=
20 1E 1E
ar r

Figure 66 Solution to the problem cont.

Line O holds the timer that repeats every 26 s. Lines 1-6 separate the 26 s
into segments that define which lights should be lit. This is most easily
done with the limit test operation. There are alternatives such as using GEQ
and LES in series.

61

2.4.1 Can Count On You

In the same way as timers count time, counters count the number of times
something occurred.

2.4.1. Types of Counters and Their Uses

There are 3 types of counters in RSLogix 5000. Count Up (CTU) and Count
Down (CTD) can be used in ladder diagrams. Count Up/Down can be used
in function block diagrams. It is omitted from the ladder diagram language
because using the CTU and CTD together achieves the same result. Like
timers counters have a tag, preset value (PRE) and accumulator (ACC).
They also have bits that indicate their state. These states are overflow (OV),
underflow (UN), done (DN) as well as count ((CU) for CTU, (CD) for CTD).

The CTU works as shown in Figure 67.

RUNG 1} |—_| ‘ |_| ‘ |_| | |_| |_| |_|
CONDITION IN o 3 N I N N I B

COUNT-UP ENABLE

BIT (.CU) ‘ | | | |
COUNT-UP DONE 3 A |
BIT (DN) | B
preset value (.PRE)
4 ! N
COUNTER ACCUMULATED 3 """"""""""""""""
VALUE (.ACC) A
O i

r
Q
g
=
2
(¢}
=
o
(¢
'fl)
(¢)
=
o
=
™
J
7
=
<
g,
c
™

Figure 67 CTU

The CTD works as shown in Figure 68.

62

RUNG
CONDITION IN 0

COUNT-DOWN ENABLE
BIT (.CD)

COUNT-DOWN DONE
BIT (.DN)

COUNTER ACCUMULATED
VALUE (.ACC)

Counter reach the PRI value

Figure 68 CTD

Now let's create a simple program that uses a counter. First go to the
Timer/Counter tab (Figure 69). Add the CTU to the end of a rung and add
a tag to the counter tag (Figure 70). Set the counter Preset value (Figure
71). Finally add a condition to count the occurrence of (Figure 72).

14 H kg k= TOoM TOF RTOD CTU CTD RES

< 3 [\ Favortes £ Adaon f fams £ 6t hClUmeriCounter) oot

Figure 69 Timer/Counter tab

63

Hll\:ﬂllEﬂl TDNlTDFlRTDlCTulDTDlRESI ﬂ
| » [\ Favories £ _Aad-On & Alarms £ B p Timer/Counter A TpuiOuipi_A_Compare & _Compuishiati A Moveldogical { FleMisc & Fis/shii_{_Sequencer & Program Comtrol { F
| =] e & [o] |
e —l]
] e =
& courter |G
& I —]
& Accum 7
e
e

Figure 70 Add CTU to rung and add tag

th:ﬂlhaﬁl TDNlTDFlRTﬂlDTuICTDlRESl ﬂ
| » [\ Favortes {_Add-on £ Alarms A Bt A TimeriCounter A pitioutp f_Compare A Co " A Mowelogical A _Flemdisc. A Flelshitt f_Sequencer A_Program Cortral A T
—~CTu
[Cournt L ey

preset [< <0 —

Figure 71 Set preset value

}—{lh:ﬂllﬂ 1}'%'{}l{L}I{u)loMslasRlosrl ﬂ
I_Dl Faviorites Add-On Alarms Bit Input/Oudput Cormptemtath toweilogical Filgiizc: Filz/Shift SEGUERCEr Program Contral Ft,

= e

Countetl_action ——CTU
0 JE Count Up el
u Counter counter
Preset 0 €-(DN—
Accum 7 ¢

Figure 72 Add condition to count the occurrence of

This short program will count the occurrence of the counted_action tag.
The counter will add one to the accumulator (ACC) on every rising edge of
its condition. Once it reaches the preset value the done bit will be activated.
As we have seen on Figure 67 once the done bit is true the counter will not
stop counting. For every rising edge of the counted_action the accumulator
will be incremented by one until it reaches the highest possible value
(2,147,483,647). If we try to increment it further an overflow will occur. This
will result in the overflow bit (OV) becoming TRUE and the value of ACC will
become -2,147,483,648.

64

Similarly a CTD would subtract one from the ACC on every rising edge of its
condition. Once it reaches -2,147,483,648 and we decrement it further an
underflow will occur. This will result in the underflow bit (UN) becoming
TRUE and the value of the ACC will become 2,147,483,647.

To reset the ACC value of a timer/counter use the Reset instruction. This
instruction takes the tag of a timer/counter and sets its ACC to O when its

condition is TRUE.

In those instances where we need to exceed these limits we can use
cascading counters (Figure 73).

= = T 7 o R R o e [0
u Favorites £ Add-On L Alarms Bit Timer/Courter InputOutput Compare A Computeddath £ Movellogical £ Filemfisc. & FilefShift X Sequencer £ Program Corrol £ For,
courted_sction edge_detection —)
0 I {ons Court Up Heur—{
Courter courter
Preset 10 H-{DH—
Accum 7 ¢
courter DM —CTu
1 —F Court U S]]
Courter counter
Preset 10 €D 3—
Accum O
counter
———RES

Figure 73 Cascading counters

Normally in the case of counters you do not need to use edge detection
since it is already integrated into the counter. However when you are using
the a counters DN bit to reset itself as shown in Figure 72 it will detect a
false edge and the ACC will be set to 1 instead of 0. To fix this simply add a
One Shot instruction to the counter being reset.

2.4.2. Exercise V: Batch Mixing
In this exercise the task is to write a program to control a batch mixer
which is shown on Figure 74.

65

FLOWMETER1 PUMlpl I
ﬁﬁﬁl Hl
FLOWMETER2 FUMP2 @ MIXER
= OGN
HI-LEVEL
@ | Start @ Run
@ | Stop @ Full
LOW-LEVEL
THERMOSTAT
HEATER
PUMP3
NG —

FLOWMETER3

Figure 74 Batch mixer

The inputs are shown in table 13.

66

Table 13 Inputs of the batch mixer system

I n p u t s

(switching elements) Name Type Identifier
Pushbutton Start NO | Local:1:I.Data.O
Pushbutton Stop NC | Local:1:I.Data.l

Flowmeter FLOWMETER1 | NC | Local:1:I.Data.2
Flowmeter FLOWMETER2 | NC | Local:1:I.Data.3
Flowmeter FLOWMETER3 | NC | Local:1:I.Data.4
Level sensor HI-LEVEL NO | Local:1:I.Data.5
Level sensor LOW-LEVEL NO | Local:1:I.Data.6
Temperature sensor | THERMOSTAT | NO | Local:1:1.Data.7

The outputs are shown in table 14.

67

Table 14 Outputs of the batch mixer system

gélv?élel; Name Identifier
Pump PUMP1 Local:2:0.Data.O
Pump PUMP2 Local:2:0.Data.1
Pump PUMP3 Local:2:0.Data.2
Contactor MIXER Local:2:0.Data.3
Contactor HEATER Local:2:0.Data.4
Indicator Lamp Run Local:2:0.Data.5
Indicator Lamp Full Local:2:0.Data.6

The task we are charged with is the following:

When the Start button is pressed the batch mixing will start.
Fill the tank up with the fluids using PUMP1 and PUMP2.

As PUMP1 and PUMP2 are working FLOWMETER1 and
FLOWMETER?2 will indicate every liter of fluid with one pulse. Use
these pulses to count the amount of fluid used. Make sure PUMP1
stops after 80 liters.

Once the tank is full heat and mix the batch.

Once the heat is sufficient the THERMOSTAT will signal. Keep the
temperature on this level while mixing.

The mixing should stop after 60 seconds.

Once the mixing is done stop heating and drain the tank completely
using PUMP3.

68

The machine should continuously work until stopped.

While the machine is running indicate it with the Run lamp.

When the tank is full HI-LEVEL will give a TRUE signal. Indicate this
with the Full lamp.

When the Stop button is pressed the process stops. When you press
the Start button the process must continue where it left off.

Figure 75 shows the solution.

HIUI@I 4+I+y|< }Iﬂ_»lﬂj»lDHEIDEPIDEFI

M

Add-On Alarms Bit Timer iCs

ourter Input/Output Compare ‘ComputeMath Movellogical FileMisc.

File/Shift Sequencer Program Control For,

stop start run_lamp
<Local:1:Data1> <Local:1:| Data.0= <Local:2:0 Data 5=
1E JE
=15 JC
run_lamp
<Local:2.0 Data.5>
JC
run_lamp hi_level pumpl
=<Local:2:0 Data 5> drain_tank_bit <Local1:|.Data.5= pump!_counter.dn <Local:2:0 Data 0=
JE —3 y 3
pump2
pumpl_counter.dn <Local:2:0 Data.1>
JE
lo_level pump3
drain_tank_bit <Local1:|.Data 6= <Local2:0 Data.2»
Gl T
J pli=
Io_level
mixing_timer dn =<Local1:1Dsta 6> drain_tank_bit
1E 1E
JC JC
drain_tank_bit
flowmeter!
<Local 1:.Data.2= TU-
JE Cournt Up HCu>—
Courter pump!_counter
Preset 80 €-(DN>—
Accum 0¢
run_lamp hi_level
«Local2:0.Data 5> <Local1:|Data5> g0
J E JE Retertive Timer On | -(EN.
Timer mixing_timer
Preset 6000 €-DN>—
Accum 0
thermostat heater
<Local1:lData.7> <Local2:0 Data 4>
[y
mixer
mixing_timer dn <Local:2:0 Data.3>
V
hi_level full_lamp
<Local:1:| Data 5= <Local:2:0 Data 6=
JE
lo_level
<Local1:| Data 6> mixing_timer
e RES

Figure 75 Batch mixer solution

pump1_counter
RES

69

Line O is a simple self holding circuit that operates the Run lamp. Since the
Stop button is NC the XIC instruction is used to break the circuit.

Line 1 is responsible for filling and draining the tank. It uses the run_lamp
to check if the Start button has been pressed and breaks into 2 parts. If the
drain_tank bit is false and the tank is not full it starts to fill the tank using
first PUMP1. Once PUMP1 has pumped 80 liters it is disabled and PUMP2
fills the rest of the tank until the HI-LEVEL sensor disables PUMP1 and
PUMP2. Once the drain_tank_bit is TRUE the tank is drained using
PUMP3 until the LO-LEVEL sensor disables PUMP3.

Line 2 is also a self holding circuit. It is responsible for the drain_tank_bit.
This bit is TRUE when the tank needs to be drained. The condition for this
becomes TRUE when the mixing timer reaches its preset value. Once the
tank reaches the LO-LEVEL sensor the draining needs to stop.

Line 3 has the counter that measures the fluid pumped by PUMP1. Its
preset value is set to 80 since that is required. If you need to mix a different
ratio simply change the value.

Line 4 is responsible for the heating and mixing of the batch. Here we used
a retentive timer. This way if the Stop button is pressed it will not lose its
value. A normal timer may not be acceptable since each time it stops the
timer will reset and the batch can be over mixed. The condition for heating
is simply when the THERMOSTAT is off start heating, when it is on stop.
This is the most basic control for heating. In other cases something more
sophisticated should be used.

Line 5 handles the Full lamp.

Line 6 resets the counter and the timer once the tank is drained.

2.5. Advanced Stuff

In the previous sections we saw the basic instructions that are available for
most PLCs. In this section we will see the full abilities of the RSLogix 5000
programming environment. First up are math operations.

2.5.1. Math Operations

Math operations as their name suggest allow us to manipulate data in a
mathematical way. Numbers are stored in memory and we access them with
tags. To store a number a fix amount of memory needs to be set aside or in
other words allocated. The size of the allocated memory determines the

70

range of values that can be stored there. Table 15 shows the data types
associated with numbers and their ranges.

Table 15 Data types and ranges

,]1?;1 ;2 Negative Positive
SINT -127 127
INT -32,768 32,767
DINT -2,147,483,648 2,147,483,647
-3.402823*1038 1.1754944*10-3s
REAL
-1.1754944*10 38 3.402823*10s3s

Math operations can be found under Compute/Math (Figure 76).

H | ||:r|||g4| cPTInnnlsuBl MULl n[ulnnnlsanl NEEl RESI ﬂ
|_>| Favortes A Add-On £ Alarms £ Bt A Timer/Cournter Inpu Aot COMpEre| ComputeMath wellogical FileMisc File/=hift SEGUENCET Program Contral F

Figure 76 Compute/Math tab

These operations are:

e ADD - (Figure 77) Adds the value of source A to source B and stores
the result in Dest.

—— ADD ——
— Add |
Source A ?

??
Source B ?
??
Dest ?
??

Figure 77 ADD instruction

71

e SUB - (Figure 78) Subtracts the value of source B from source A and
stores the result in Dest.

—— SUB ——

— 1 Subtract —
Source A ?
7
Source B ?
7
Dest ?
??

Figure 78 SUB instruction

e MUL - (Figure 79) Multiplies the value of source A by the value of
source B and stores it in Dest.

——— MUL ———

— | Multiply —
Source A ?
o
Source B ?
o
Dest ?
o

Figure 79 MUL instruction

e DIV - (Figure 80) Divides the value of source A by the value of source
B and stores the result in Dest.

—— DIV

Divide ‘

Source A ?
e

Source B ?
°?

Dest ?
e

Figure 80 DIV instruction

72

MOD - (Figure 81) Divides the value of source A with the value of
source B and stores the remainder in Dest.

—— MOD——
— 1 Modulo —
Source A ?

o
Source B ?
7
Dest ?
o

Figure 81 MOD instruction

SQR - (Figure 82) Computes the square root of source and stores it in
Dest.

— SOR ——

Square Root

Source ?
??
Dest ?
??

Figure 82 SQR instruction

NEG - (Figure 83) Changes the sign of source and stores it in Dest.

—— NEG ——

Negate

Source ?
??

Dest ?
??

Figure 83 NEG instruction

73

e ABS - (Figure 84) Takes the absolute value of source and stores it in
Dest.

—— ABS —
Absolute Value

Source ?
??
Dest ?
??

Figure 84 ABS instruction

e CPT - (Figure 85) Computes the arithmetic operations defined in the
expression and stores it in Dest.

— CPT ———

Compute

Dest ?
??

Expression ?

Figure 85 CPT instruction

Naturally since there are 4 data types it can occur that we have data in one
data type and want to store it in another. In these cases data conversion
happens in the following way:

e Before the instruction executes, it performs the following
conversions:

1) If one of the input operands is a REAL value, any SINT, INT,
or DINT values convert to REAL values.

2) If none of the input operands are a REAL value, any SINT or
INT value converts to a DINT value.

e After instruction execution, the result (a DINT or REAL value)
converts to the destination data type, if necessary.

74

Once an arithmetic operation has been completed the arithmetic status bits
hold additional information about the result of the operation. The arithmetic
status bits are:

e S:N sign. This bit is set to TRUE if the result is negative. The
location of this bit can be seen on Figure 84.

e S:C carry. The carry flag represents the bit that would be in the
data type if it were stored to a larger data type. It is not actually part
of the data type. Figure 32 shows where integers store this data.

e S:Z zero. This bit is set to TRUE if the result is O.

e S:V overflow. This bit is set to TRUE if the result overflows the
destination. Every time this bit changes from FALSE to TRUE it
generates a minor fault. This also happens if you divide by O.

2.5.2. Logical Operations

We have seen logical operations before. You connect 2 or more conditions in
series or parallel and they form a logical AND or OR instruction. Those
operations are only performed on bits. These logical operations are
performed on bytes. These logical operations are found under the
Move/Logical tab (Figure 86).

H | Hlla{l NUUlHUHlﬂNDl R | XURlNUTlSWFBl CLRIBTDl ﬂ
| [\ Favores_A_Ada-on £ _Aarms { B A TmerfCounter A MpUOLWpE A Compare A_Co i EMiisc. & File/shit {_Sequencer & Program Conrol & Fc

Figure 86 Move/Logical tab

These operations are:

e AND - (Figure 87) Bitwise AND the value of source A to source B and
stores the result in Dest. An example can be seen on Figure 88.

— AND ——

Bitwise AND

Source A ?
??

Source B ?
??

Dest ?
??

Figure 87 bitwise AND instruction

75

SourceA
loJoJo]o]o]o]ololofololofo] 1]ol1][of1]ol1]of1]of1fafalxlaf1][1]1]1]

Bit 31 30 29 28 27 26 25 24 23 22 21 20:19 18 17 16 15 14 13 12:11 10 9 8 7 6 5 4 3 2 1 O

SourceB
lo[olololololololofolofol1]1]1]1]1[1]1]1][olo[olololo]olo]0]0[0]O0]

Dest
loJoJo]o]o]o]o]o]o]ololofelxlelifel1lol] ol olololololololo]o]o]0]

Figure 88 Example of bitwise AND

e OR - (Figure 89) Bitwise OR the value of source A to source B and
stores the result in Dest. An example can be seen on Figure 90.

—— OR
Bitwise Inclusive OR
Source A ?
??
Source B ?
??
Dest ?
??

Figure 89 OR instruction

SourceA

|0|0|0|0|0|0|0|0I0|0l0|olo|1lol1|0|1|0|1|0|1|0|1|1I111l1l1I1|1l11
Blt3130292827262524232221201918171613141312111098765432]0

SourceB : :

|0|0|0|0|0|0|0|0|0|0|0|0|1|1!1l1|1!1l1|1|0|0|0|0|0|0|0|0|0|0|0|01

Dest
l0|0|0|0|0|0|0|0l0l0IOIOI1|1|1| ilafafalal ol 1fofafalalaf 2 2] 2] 1] 1I

Figure 90 Example of bitwise OR

76

XOR - (Figure 91) Bitwise Exclusive OR the value of source A to

[]
source B and stores the result in Dest. An example can be seen on

Figure 92.
—— XOR ——
] Bitwise Exclusive OR -

Source A ?

??

Source B ?

??

Dest ?

??

Figure 91 XOR instruction

SourceA

IMMMMMMMMMNMMMHMHMHMHMHMHHHHﬂﬂﬂﬂﬂ

Bit 313029282726252423222120191817161‘31413121110 9 8 7 6 5 4 3 21 O

SourceB
IMMMMMMMMMMMMHHHHHHHHMMMMNMMMMMMM

Dest

IMMMMMMMMMNMOIOIOIOIMOIMHHHﬂﬂﬂﬂHﬂ

Figure 92 Example of bitwise XOR

NOT - (Figure 93) Negates every bit of Source and stores the result in
Dest. An example can be seen on Figure 94.

———— NOT ——
] Bitwise NOT -
Source ?

??
Dest ?
??

Figure 93 NOT instruction

77

Source
loJoJo]o]olo]olo]o]ololofo] 1]ol1]of1]ol1]of1]of1]afalzlaf1][2]1]1]

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

Dest
[alafafafafafafafafalala]a]ol1]o]1][ol1]o[1]o]1]ofof0l0l0[0O[O] 0] O]

Figure 94 Example of NOT

MOV - (Figure 95) Copies the value of Source to Dest and leaves the

source unchanged.

—— MOV ———

Move

Source ?
??

Dest ?
??

Figure 95 MOV instruction

e MVM - (Figure 96) Copies the value of Source to Dest, allows a
portion of the source to be masked. Leaves the source unchanged. An

example can be seen on Figure 97.

———— MVM—
Masked Move

Source ?
??
Mask ?
??
Dest ?
??

Figure 96 MVM instruction

78

Source
lo[1]o]olo]1]1][1]of1]ol1][1]olol1]1]1]of1][1]o1]ol2[ol1]1]1]0]1]0]

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0

Mask
[1l1]1]1]ololofo]1]of1]o[1]1]1]1]of1]of1][1]1]1]1]0l0l0l0]0[0[1]1]

Dest
lo[1]ofolololo]olo]ololol1]olol1] o1l o1 1]ol1]0]o0]o]0] 0] 0] 0[1]0]

Figure 97 Example of MVM

e CLR - (Figure 98) Clears the Dest value (Sets it to 0).

— CLR —

Clear

Dest ?
o

Figure 98 CLR instruction

e SWPB - (Figure 99) Rearranges the bytes of the Source and stores it
in Dest. The swap has several orders these are: Reverse, Word,
High/Low. Examples of these orders can be seen of Figure 100-102.

SWPB
] Swap Byte -
Source ?
??
Order Mode ?
Dest ?
??

Figure 99 SWPB instruction

79

——SWPB———

Swap Byte

Source DINT _1
'ABCD' €

Order Mode REVERSE

Dest DINT 1 reverse
'DCBA' €

Figure 100 Example of Reverse byte swap

SWPB——
Swap Byte
Source DINT 1
'ABCD' €
Order Mode WORD
Dest DINT_1_swap_word
'CDAB' €

Figure 101 Example of Word byte swap

SWPB
Swap Byte
Source DINT 1
'ABCD' €
Order Mode HIGH/LOW
Dest DINT_1_swap_high_low
'BADC' €

Figure 102 Example of High/Low byte swap

80

e BTD - (Figure 103) Copies the specified bits from the Source, shifts
the bits to the appropriate position, and stores the bits into the Dest.
Examples of the BTD instruction can be seen on Figures 104, 105.

—— BTD —
Bit Field Distribute
Source ?

7
Source Bit ?
Dest ?
o
Dest Bit ?
Lenght ?

Figure 103 BTD instruction

BTD

Bit Field Distribute

Source value_1
2#1111_1111_.1111-1111_1111_1000_0000_0000 <
Source Bit 3
Dest value_1
2#1111_1111_1111.1111.1111_1000_0000_0000 <
Dest Bit 10
Lenght 6

Source Bit (3)

Lenght (6)

value_1 before BTD instruction —
l1|1|1|1|1|1|1|1I1I1I1|1|1I1|1I1|1|1|1|1|1|0IOIOI0IOIOI0I0I0I0IOI

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11

Destmatloni
value_1 after BTD instruction Bit (10)
[o[o[o]oloo[o]ololo]ofo]o]1]0] 1|o|0|o|o|0|o|olololololololololol

Figure 104 Example 1 of BTD

81

BTD

Bit Field Distribute

Source value_1
2#1111_1111_1111.1111_1111_1000_0000_0000 <
Source Bit 3
Dest value_2
2#0000_0000_0000_0000_0000_0000_0000_0000 <
Dest Bit 5
Lenght 10

Source Bit (3)
value_1 before BTD instruction Lenght (10)
(alalalalelalalafalalalalalalalal el alalalalalalalalalal il 2l el 1]

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 21 0

value_1 after BTD instruction
Lafalalafalafalafafafalalalalalalalhfafalafafafalalaljlala]a]a]1]

value_2 before BTD instruction
loJololo]olo]o]ololo]o]olofolololo]dlolololofololololdlolololo]0]

value_2 after BTD instruction
[oJoJoJoJoJo]oJolololololololololoalalalal i il il 1] 1|1|o|olo|o|o|

Destination T
Bit (5)

Figure 105 Example 2 of BTD

2.5.3. File operations

Up until now we have dealt with bits and numbers. Numbers were in the
form of a single number or bytes. When we want to deal with a collection of
numbers or larger groups of bytes we use files. Files are a location in
memory that has a beginning, some content and an end. In PLC
programming files are used to handle data that are grouped together such
as an array. They are also used to buffer data. FIFO and LIFO structures
are the most important data buffers used. File operations are found under 2

82

tabs File/Misc. (Figure 106) and File/Shift (Figure 107). File operations
usually have a Control field. Place a tag in this field that identifies that
instance of the instruction.

H Il f=l FAL FSC oOP FLL AUE SRT STD SIZE CPS 3

)|\ Favortes £ &Add-On £ Alsrms £ Bt A TimerfCourter £ InputiOutput A Compare £ Computedsth £ Moveﬂ_og\cii FileMisc. E!ﬂaﬁhm .p=(SEQUENCE! : Program Contral : Fo

Figure 106 File/Misc. tab

H I k=l BSL BSR FFL FFU LFL LFU 3

> [\ Favortes £ Add-On " Alarms { Bt £ Timer/Courter £ nputiOutput (T Compare £ ComputeMath { MovelLogical £ FileMsc!ﬁ File/Shift quencer A Program Cortrol £ For

Figure 107 File/Shift tab

The file operations are:

e BSL - (Figure 108) Bit Shift left shifts the specified bits within the
Array one position left. An example can be seen on Figure 109. The
BSL instruction has 5 attributes:

o EN - Enable indicates the BSL instruction is enabled.

o DN - Done indicates the instruction shifted.

o UL - Unload is the instructions output. It holds the bit that
was shifted out of range.
ER - Error is set when the LEN<O.
LEN - Length specifies the number of array bits to shift.

BSL
—! Bit Shift Left _(EN

Array _(DN)_

Control

Source Bit
Lenght

VUV VY

Figure 108 BSL instruction

83

BSL

— Bit Shift Left —EN
Array array_dint[O]
Control control 1 —(DN)—
Source Bit input_1

Lenght 10
inpuLl
array_dint before shift ‘>
|1|1|1|1|0|0|0|0I1I1I1|1|0IOIOI0|1|1|1|1|0|0IOIOI1I1|1I1I0I0I0IOI
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10
@ 4./ These bits shift left
UL bit

array_dint after shift
|1|1|1|1|o|o|o|o|1|1l1|1|o|ololol1|1|1]1l0lo|0|1|1|1|1|0|o|0|0|1|

Figure 109 BSL example

e BSR - (Figure 110) Bits Shift Right shifts the specified bits within the
Array one position right. An example can be seen on Figure 111. The
BSL instruction has 5 attributes:

o EN - Enable indicates the BSR instruction is enabled.

o DN - Done indicates the instruction shifted.

o UL - Unload is the instructions output. It holds the bit that
was shifted out of range.
ER - Error is set when the LEN<O.
LEN - Length specifies the number of array bits to shift.

BSR
—|Bit Shift Right —(EN
Array ?
Control ? —(DN)—
Source Bit ?
Lenght ?

Figure 110 BSR instruction

84

BSR
— Bit Shift Rightt _(EN
Array array_dint[O]

Control control 1 —(DN)—
Source Bit input_1

Lenght 10 <

0]

UL bit
array_dint[0] before shift
[1[1]1]1]ofololof1l1]1]1]ololofol1][1]1]1]olofolofl1]1]1][1]0[0]0] O]

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 I9 8 7 6 5 4 3 2 1I 0
These bits shift right

input_1 X
array_dint[O] after shift i .
[1]1]1]1]oJolofof1]1]1]1]olololo]1]1[1] 1] o] ol1Tolel il il il il o]l olal

Figure 111 BSR example

e FFL - (Figure 112) FIFO Load copies the Source value to the FIFO.
An example can be seen on Figure 113. FFL has 5 attributes:

o EN - Enable indicates the FFL instruction is enabled.

o DN - Done indicates the FIFO is full. This bit disables further
loading while POS = LEN.

o EM - Empty indicates the FIFO is empty.

o LEN - Length specifies the maximum number of elements in
the FIFO

o POS - Position indentifies the place where to put the next
value.

85

dint[0]

next available
position in the »
FIFO

FIFO Load
Source
FIFO
Control
Lenght
Position

— FFL ——

VO 0 0V

—EN
on}
{EM-

Figure 112 FFL instruction

— FFL ——
| FIFO Load
Source value_1
FIFO array_dint[O]
Control control_1
Lenght 10
Position 5
g
array_dint §I
before FIFO load =
o
o
000O0O 0
11111 1
2222 2 2
33333 3
44444 a
5 value_1»
7
8
9

—EN
Hon}
Bl

array_dint

after FIFO load

g~ WIN|~[O

gl P WIN|=|O

g~ WIN|~[O

gl P WIN|=|O

g~ WIN|~[O

Figure 113 FFL example

.pos

© ® N o & w N~ o control 1

dint[5]

86

FFU - (Figure 114) FIFO Unload unloads the value from position O
(first position) of the FIFO and stores that value in the Destination.
The remaining data in the FIFO shifts down one position. An
example can be seen on Figure 115. FFL has 5 attributes:
o EN - Enable indicates the FFU instruction is enabled.
o DN - Done indicates the FIFO is full. This bit disables further
loading while POS = LEN.
EM - Empty indicates the FIFO is empty.
o LEN - Length specifies the maximum number of elements in

the FIFO
o POS - Position indentifies the place where to put the next
value.
FFU
—| FIFO Unload —EU
FIFO > DN}
Dest ? EM
Control S riEM-
Lenght ?
Position ?
Figure 114 FFU instruction
FFU
— FIFO Unload —EU
FIFO array dint[0] —{DN}-
Dest value_2 EM
Control control_1 _()_
Lenght 10
Position 6

87

dint[0]

é
array_dint E;I
before FIFO unload 5
8
000O0O 0 » value_2
11111 1
22222 2
33333 3
44444 4 | shift
55555 5
000O0O 6
000O0O0 7
000O0O0 8
000O0O0 9

2
array_dint E,I
after FIFO unload 5
8
11111 0
2222 2 1
33333 2
4 4 4 4 4 3
55555 4
000O0O 5 value_2=000C
000O0O0 6
000O0O0 7
000O0O0 8
000O0O0 9

Figure 115 FFU example

e LFL - (Figure 116) LIFO Load copies the Source value to the LIFO.
An example can be seen on Figure 117. LFL has 5 attributes:

EN - Enable indicates the LFL instruction is enabled.

DN - Done indicates the LIFO is full. This bit disables further

O
O

loading while POS = LEN.

EM - Empty indicates the LIFO is empty.
LEN - Length specifies the maximum number of elements in

the LIFO

POS - Position indentifies the place where to put the next

value.

— LFL

| LIFO Load
Source
LIFO
Control
Lenght
Position

VO 0 0V

—EN

o
v

Figure 116 LFL instruction

88

next available
position in the
LIFO

array_dint

(DN}
—{Em)-

after LIFO load

Ulh|WIN—O

Ul WIN[~O

gl » | WIN[—~|O

Ul P WIN[—O

Ul P WIN|~O

——— LFL ——
—] LIFO Load —EN
Source value_1
LIFO array_dint[O]
Control control 1
Lenght 10
Position 5
g
array_dint §I
before LIFO load =
8
000O0O 0
11111 1
22222 2
33333 3
4 4 4 4 4 a
5 value_1 9
7
8
9

Figure 117 LFL example

.pos

© ® N o & w o — o control 1

dint[5]

e LFU - (Figure 118) LIFO Unload unloads the value at .POS of the
LIFO to Dest and stores O in that location. An example can be seen
on Figure 119. LFL has 5 attributes:

o EN - Enable indicates the LFU instruction is enabled.

o DN - Done indicates the LIFO is full. This bit disables further
loading while POS = LEN.
o EM - Empty indicates the LIFO is empty.
LEN - Length specifies the maximum number of elements in
the LIFO
o POS - Position indentifies the place where to put the next
value.

89

—— LFU —

| LIFO Unload

LIFO
Dest
Control
Lenght
Position

VO 0 0V

—EU
—on}
{EM-

Figure 118 LFU instruction

—— LFU ——

—EU
Hon}
Bl

~ | LIFO Unload

LIFO array_dint[O]

Dest value_2

Control control_1

Lenght 10

Position 6
2
array_dint §|
before LIFO unload =
8
00000O 0
11111 1
22222 2
33333 3
4 4 4 4 4 4

dint[5] 55555 5 ¥ value 2

7
8
9

array_dint

after LIFO unload

A W[~ (O
AW~ (O
AW~ (O
A IWIN[R(O
A IWIN[R(O

Figure 119 LFU example

.pos

© ® N o & w N —~ o control 1

90

e SIZE - (Figure 120) finds the Size of a dimension of an array. Dim.
to Vary is the dimension to check (0, 1, 2). Size is a tag that holds
the result.

—— SIZE——
| SIZE in Elements

Source ?
??
Dim. To Vary ?
Size ?
2?7

Figure 120 SIZE instruction

e FLL - (Figure 121) File Fill fills elements of an array with the Source
value. The Source remains unchanged.

—— FLL ——

| Fill File [
Source ?
Dest ?
Lenght ?

Figure 121 FLL instruction

e COP - (Figure 122) Copy File copies the value(s) in the Source to the
values in the Destination. The Source remains unchanged.

—— COP —

| Copy File B
Source ?
Dest ?
Lenght ?

Figure 122 COP instruction

91

CPS - (Figure 123) Synchronous Copy File copy the value(s) in the
Source to the values in the Destination. While copying no I/O
updates can change the data. The Source remains unchanged.

— CPS —
Synchrounos Copy File [

Source ?
Dest ?
Lenght ?

Figure 123 CPS instruction

FAL - (Figure 124) File Arithmetic and Logic performs copy,
arithmetic, logic, and function operations on data stored in an array.
These instructions are the same as for the CPT except they work on
arrays. FAL has 5 attributes:

o EN - Enable indicates the FAL instruction is enabled.

o DN - Done indicates the instruction has operated on the last
element (POS = LEN).

o ER - Error is set if the expression generates an overflow (S:V is
set). The instruction stops executing while the ER bit is
cleared.

o LEN - Length specifies the number of elements in the array on
which the FAL instruction operates.

o POS - Position indentifies the position of the current element
that the instruction is accessing.

—— FAL —
File Arith/Logical — EN)

Control _(DN)—

Lenght
—(ER|-

Position
Mode
Dest

VO 0 VUV

P?

- -

Expression

Figure 124 FAL instruction

92

e FSC -

(Figure 125) File Search and Compare compares values in an

array, element by element as defined by the expression. This
instruction is the same as CMP except it works on arrays. FSC has 7
attributes these are:

@)
@)

EN - Enable indicates the FSC instruction is enabled.

DN - Done indicates the instruction has operated on the last
element (POS = LEN).

ER - Error bit is not modified.

IN - Inhibit indicates the FSC instruction detected a true
comparison. You must clear this bit to continue the search
operation.

FD - Found indicates the FSC instruction detected a true
comparison.

LEN - Length specifies the number of elements in the array on
which the FSC instruction operates.

POS - Position indentifies the position of the current element
that the instruction is accessing.

— FSC
File Search/Compare —EN
Control arrayl | —{DN}-

Lenght
Position _(ER)_

Mode
Expression

WV OO

Figure 125 FSC instruction

e SRT- (Figure 126) File Sort sorts a set of values in one dimension
(Dim to vary) of the array into ascending order. SRT has 5 attributes:

@)
@)

EN - Enable indicates the SRT instruction is enabled.

DN - Done indicates the instruction has operated on the last
element (POS = LEN).

ER - Error is set when either .LEN < O or .POS < 0. Either of
these conditions also generates a major fault.

LEN - Length specifies the number of elements in the array on
which the SRT instruction operates.

POS - Position indentifies the position of the current element
that the instruction is accessing.

93

Sort File
Array

Dim. to vary
Control
Lenght
Position

—— SRT —

V0V VY

—EN
o

Figure 126 SRT instruction

AVE - (Figure 127) Average calculates the average of a set of values.
AVE has 5 attributes:
EN - Enable indicates the AVE instruction is enabled.

DN - Done indicates the instruction has operated on the last

O
O

element (POS = LEN).

ER - The error bit is set when the instruction generates an
overflow. The instruction stops executing until the program
clears the ER bit. The POS value stores the position of the

element that caused the overflow.

LEN - Length specifies the number of elements in the array on
which the AVE instruction operates.
POS - Position indentifies the position of the current element

that the instruction is accessing.

Average File
Array

Dim. to vary
Dest

Control
Lenght
Position

—— AVE —

—EN
—onh
—eR)

Figure 127 AVE instruction

94

e STD - (Figure 128) File Standard Deviation calculates the standard
deviation of a set of values in one dimension of the Array and stores
the result in the Destination. STD has 5 attributes:

o EN - Enable indicates the STD instruction is enabled.

o DN - Done indicates the instruction has operated on the last
element (POS = LEN).

o ER - The error bit is set when the instruction generates an
overflow. The instruction stops executing until the program
clears the ER bit. The POS value stores the position of the
element that caused the overflow.

o LEN - Length specifies the number of elements in the array on
which the STD instruction operates.

o POS - Position indentifies the position of the current element
that the instruction is accessing.

—— STD —

| Standard Deviation —(EN

Array ?
Dim. to vary ? —(DN)—
Dest ?

?? [—ER}
Control ?
Lenght ?
Position ?

Figure 128 STD instruction

2.5.4. Program Control

As tasks become more complex the programs usually become larger and
more difficult to manage. Programs can become too large to see through,
some parts only need to execute once, some parts need to execute many
times. This has always been true for programming. Depending on the
programming language there are several ways to manage code. More
advanced languages use functions. Languages that are close to the metal
usually use things like labels and subroutines.

Labels are identifiers in the code that jump instructions can point to. They
usually identify code that needs to be executed more than once. Once a line
with a jumps to a label the flow of the program continues from there. This
way you can skip certain parts of the code (Figure 129).

95

label 20
—(JMP)—

label 20

—[LBL:I— [other rungs of code]

Figure 129 Jump to label

Subroutines are sections of code in a different program that can be called
when needed. The main difference between a subroutine and a label is that
you return from subroutines and continue where you left off. You can nest
subroutines in subroutines. Each will return to the one that called it (Figure
130). In older PLCs subroutines do not accept input parameters. However in
RSLogix 5000 they do (Figure 131).

level 1 level 2 level 3
subroutine action_1 subroutine action_2 subroutine action_3

main routine

action_1 /
action_2 action_3

D

Figure 130 Nested subroutines

96

When enabled, the JSR N JSR —
instruction passes value_1 %umtp to Subroutnze .
: outine name routine_
and value_2 to routine_1 Input par vahae 1
Input par value_1

Return par float_value_1

—— SBR —— The SBR istruction receives value_1 and
Subroutine — value_2 from the JSR instruction and
Input par value_a copies those values value_a and value_b,
Input par value_b respectively. Logic execution continues

in this routine.

— other rungs of code

RET ——

When enabled, the RET instruction sends —| Return

float a to the JSR instruction. The JSR Return par float_a
instruction receives the float_a and copies
the value to float value 1. Locic execution
continues with the next instruction following
the JSR instruction.

Figure 131 Subroutine execution

H ol =l P LBL JsR JSR RET SBR THD MCR UID UIE SFRSFP BWENT EOT AFI1 HOP b

i Favorites 4 Add-On A Alarms: Bit Timerfcounter A INpUlOUpt A Compare £ Computedsin A Movelogicel A Fileiec. A FIefshit A Sequencer .Prugram Control 4 F3

Figure 132 Program Control tab

97

Program control instructions can be found under the Program Control tab
(Figure 132). These are:

e LBL - (Figure 133) Label identifies portion of code by label name for

jump instructions.
—[LBL:I—

Figure 133 LBL instruction

e JMP - (Figure 134) Jump jumps to a specified label and skips the
code between. You can jump forward or back. If the jump condition
is disabled it does not affect program execution.

—{(JMP}—

Figure 134 JMP instruction

e SBR - (Figure 135) Subroutine signifies the beginning of a
subroutine. It passes data to and executes a routine. Input par holds
the tags for the subroutine. You can pass more than one input
parameter.

— SBR ——

Subroutine
Input par ?

Figure 135 SBR instruction

98

RET - (Figure 136) Return signifies the end of a subroutine and returns
the result.

— RET ——

Return
Return par ?

Figure 136 RET instruction

e JSR - (Figure 137) Jump To Subroutine jumps execution to a
different routine and passes input parameters.

—— JSR —

Jump to Subroutine

Routine name ?
Input par ?
Return par ?

Figure 137 JSR instruction

e MCR - (Figure 138) Master Control Reset used in pairs, creates a
program zone that can disable all rungs within the MCR instructions

(Figure 139, 140).
—(MCR)—

Figure 138 MCR instruction

99

input_1 input_2 input_3

[1[1[(
—t 1C 1C (MCR}—
input_4 output_1
[(
% L \)_
input_11 input_12 output_2
1[1[(
1L 1L \)_
input_3
1f
1L
input_9 input_10 output_3
% [1[(
L 1L \

Figure 139 MCR example

(MCR)—

100

input_1 input_2 input_3 input_4 output_1
[1L 1L 1L (

% L 1L 1L 1L \)_

input_1 input_2 input_3 input_11 input_12 output_2

% [1L 1L 1[1[()_
L 1L 1L 1L 1L \

input_3

)2
1L

input_1 input_2 input_3 input 9 input_10 output_3
% [1L 1L 1L 1L ()_
L 1L 1L 1L 1L \

Figure 140 MCR example

These are the most commonly used program control instructions. Now let's
see an example of their use.

2.5.5. Exercise VI: Bottling Line
In this exercise the task is to control a bottling plant (Figure 141).

101

Fill tube
B Ls4 Ls7
]
Ls2 Large charge

Small charge 1 Cap ram

LS Ls3 Ls5
e

ONONONONONONONONONORONONONONONONONONO! M, NONONONONONONONONONONO
= 5 . 5

Figure 141 Bottling plant

The inputs are shown in table 16.

102

Table 16 Inputs of the bottling plant system

I n p u t s

(switching elements) Name Type Identifier
Pushbutton Start NO | Local:1:I.Data.O
Pushbutton Stop NC | Local:1:I.Data.1l
Bottle exist LS1 NO | Local:1:I.Data.2
Large bottle LS2 NO | Local:1:I.Data.3

Broken bottle LS3 NO | Local:1:I.Data.4
Fill tube out LS4 NO | Local:1:I.Data.5
Large charge out LSS NO | Local:1:I.Data.6
Small charge out LS6 NO | Local:1:I.Data.7
Cap ram out LS7 NO | Local:1:I.Data.8
Scrap gate open LS8 NO | Local:1:I.Data.9
Diver gate open LS9 NO | Local:1:I.Data.10
Box LS10 NO | Local:1:I.Data.11

The outputs are shown in table 17.

103

Table 17 Outputs of the bottling plant system

g:\;lgg; Name Identifier

Contactor Main Conveyor | Local:2:0.Data.0
Contactor Scrap Conveyor | Local:2:0.Data.1
Contactor Divert Conveyor | Local:2:0.Data.2
Contactor Grinder Local:2:0.Data.3
Valve Scrap Gate Local:2:0.Data.4
Valve Divert Gate Local:2:0.Data.5
Valve Fill Tube Local:2:0.Data.6
Valve Large Charge | Local:2:0.Data.7
Valve Small Charge | Local:2:0.Data.8
Valve Cap ram Local:2:0.Data.9
Indicator Lamp Run Lamp Local:2:0.Data.10

The

task we are charged with is the following:

Operate the bottling plant to fill large bottles with large charges,
small bottles with small charges, grind broken bottles and cap filled
bottles.

Small bottles have 2/3 times less material than large bottles. Keep
this in mind when you grind them. Once ground up each box can
hold the total volume of 9 large bottles.

Start tracking the bottles from LS1 (0). Count out when the bottle
will reach the gates, fill tube, cap ram.

The Start button starts the bottling process.

The Stop button stops the bottling process.

104

e The Run Lamp is active while the bottling process is active.
e Small bottles remain on the main conveyor, while large bottles go to
the divert conveyor
SFS R
0 —3F L To Subroutin
Rautine Name intialize
stop tart run_lamp
=Local1: Data. 1= =Local1:|.Data 0= <Local 2:0 Data.10=
1 el 1t
run_lamp grinder
=Locat2:0 Data 10= =Locat 20 Data 3=
divert_conweyor
=Locat 2.0 Data.2=
Y U
run_lamg SCEER_CONVEyar LS4 L7 L1 Hin_Commveyor
=Local 20 Data 10> =Local2:0.Data > box_js_full =Local1:lDataS= =Locali:lData.gs =Local1:|Data.2= =Local 2:0 Data 0=
2 E ENs JE S E 3 E JE
10 IE IE IE VE IE
fil_complete cap_complete
Is1
<Local1:l Data. 2= —B8R———
3 JE Bit Shift Right N
Array exists(0]
Control ec (DN>—
Source Bt LE1
=Local1:| Data.2=|
Length 32 ¢
e
——1 it Shitt Right HEN—o
Array largeld]
Control e [DM>—
Source Bit Ls2
=Local:1: Data.3=|
Length 32 ¢
—8sR———
Bit Shift Rigrt FEn—
Array broken(0]
Contral be |H(DN3—
Source Bit LS3
=Local1:| Data.4=|
Lenith 32 ¢
main_canveyor divert_oate
=Local:2C Datall= fil_complete cap_complete large(0].20 =Local 2.0 Data 5=
4 1E JE JE TE
Jr VE VE JC
broken[0].& exists[0]12
scrap_gate
=Local 2.0 Data 4>
run_kamg main_conveyor ill_tube
=local 20 Data 10> =Local2:0 Data 0= fil_complete exists[0]8 broken[0]5 =Locak 20 Data f=
B s ENS JE 1E SR
JC I'E VE 1 I'E
cap_ram
cap_complete exists[0]19 =Locat 20 .Data 9=
Epys JE
2E 1
run_lamg LS4 larue _charge
<Local 20 Data 0= <Local1:.Data 5= large(0).7 =Local20.Data.7=
5 E e 1E
10 10 1
small_charge
large0].7 =Local
4

Figure 142 Bottling plant solution

105

Ls1 Lss
<Local1:| Data 2= =Local1:1 Data B> fill_complete
7 i 1E
EaS Eas
LS6
=Local1:| Data 7=
1E
1
broken[0].5
exists[0].9
=
fill_complete
Ls1 Ls7
<Lacal1 Data 2= =Lozal1:l Data 8 cap_complats
5 i 1E
EaS Eas
exists{0] 19
I
cap_complete
L3 L=6
<Local 1 Dataze <LocalllDatads large[0]11 temp oo
£l] [] [] H OMS F— A
Source & scrap_count
0e
Source B 3
Dest scrap_count
0
large[0].11 tempt 0D-
/= ons }—| Add
Source & scrap_count
0
Source B 2
Dest scrap_count
0
Ls10
EQ =Local 1: Data11= box_is_ful
10 Grtr Than of Egl (4==B) IE
Source & scrap_court
0
Source B 26
hox_is_full
run_lamp main_canveyor sorap_sonveyor
<Local2:0 Data. 10> =Local2:Q Data.O= hox_is_full =Local 2.0 Data 1=
1 1E ENS TE
Eas £l EaS
LS10
=Locabl1Data11=
o
Ls10
<Local1:l.Data11= — LR
12 =i Clear —

Dest scrap_court
0

Figure 143 Bottling plant solution continued

106

BR —<CLR
0 Subroutine Clear
Dest scrap_count
04

—<LR:

— Clear —

Dest exizts[0]
€

LR

] clear —

Dest broken(0]
0

—<CLR
L Clear —
Dest large(0]

i

L

,—RET
1 Return from Subrouting '—

Figure 144 Initialize subroutine

Figures 142-144 show the solution to the exercise. Let's analyze the
program.

Line O on the main program calls the initialize subroutine on the first scan.
After the first scan it is not executed.

Line 1 is a self holding circuit which the Start button sets to TRUE and the
Stop button sets to FALSE. It turns on the Run Lamp, the grinder and the
divert conveyor.

Line 2 is responsible for the main conveyor. The main conveyor needs to
run unless the fill tube or cap ram are extended since these will break
bottles. We also need to stop the main conveyor if the box is full or the
scrap conveyor is running since then the ground up bottles will end up on
the factory floor.

Line 3 keeps track of the bottles. It uses the 3 BSL instructions to read data
from the exists sensor (LS1), large bottle sensor (LS2) and broken bottle
sensor (LS3). Each new bottle detected by LS1 will trigger a shift. The BSL
instructions are using 1 dimensional arrays with 1 DINT element. No more
is needed since a DINT is 32 bits and we don't really need to track more
than 24 bottles. If we needed to track more than 32 than we would use a 1
dimensional array with more than 1 DINT element.

Line 4 handles the scrap gate and divert gate. It also deletes a those bottles
from the exists array which are ground up. We are checking large[0].20
from since the gate is at the 21th bottle from the large sensor (LS2) and we
want to know if there is a large bottle at the divert gate. Similarly we are

107

checking the broken[0].8 since the scrap gate is at the 9th bottle from the
broken sensor (LS3).

Line 5 handles the cap ram which is extended if there is a bottle under it. It
also handles the fill tube which is extended if there is a not broken bottle
under it.

Line 6 handles the bottle filling. If the fill tube is extended (LS4) it releases a
large charge if there is a large bottle under the fill tube and a small charge if
there is a small bottle under the filler.

Line 7 and 8 hold 2 bits which represent when the capping and filling are
done.

Line 9 keeps track of the amount of ground up bottles in a box. It adds 3 for
every large bottle and 2 for every small bottle.

Line 10 is a self holding circuit. It is responsible for a bit that shows when
the box is full.

Line 11 is also a self holding circuit. It is responsible for the scrap
conveyors movement.

Line 12 sets the amount of ground up bottles in the box to O once the new
box arrives.

The subroutine has 2 lines but only the first one is important. It clears all
arrays when the program starts.

Literatures

1. W. Bolton: W. Bolton: Programmable logic controllers 4th edition 2006.

ELSEVIER ISBN-13: 978-0-7506-8112-4, ISBN-10: 0-7506-8112-8

Dr. Hugh Jack: Automating manufacturing systems with PLCs

3. Allen-Bradley company: Understanding and applying micro programmable
controllers

N

