SZTE Info

Kiemelt_Berenyiek_20170310

A Neuron folyóirat Berényi Antal és kutatócsoportja újabb cikkét közölte

„Univerzális mechanizmust találtunk, amely mind a gondolkodás, mind a térbeli tájékozódás során képessé teszi az úgynevezett hely-sejteket arra, hogy megbízható kódolást tudjanak végrehajtani” – összegezte Berényi Antal, az SZTE-MTA Lendület Oszcillatorikus Neuronhálózatok Kutatócsoport vezetője a Neuron folyóiratban 2017. március 8-án megjelent publikációjuk újdonság tartalmát.

Cikk nyomtatásCikk nyomtatás
Link küldésLink küldés

Nobel-díjat eredményezett az a fölfedezés, mely szerint a hippokampuszban vannak olyan sejtek, amelyek képesek kódolni, hogy az állat vagy az ember hol van éppen a „térképen”. E sejtek térképet, navigációt jelentenek az agyon belül és megtalálhatóak az emlős állatoktól kezdve az emberig minden élőlényben. E helysejtek működését mozgó állatokon figyelte meg az SZTE-MTA Lendület Oszcillatorikus Neuronhálózatok Kutatócsoport vezetője, Berényi Antal és kutatócsoportjának 3 tagja – azaz az SZTE volt PhD hallgatója, Azahara Oliva González, a posztdoktorként 2016-ban itt dolgozó Antonio Fernández-Ruiz, és Nagy Gergő TDK hallgató – az Amerikai Egyesült Államokban élő világhírű magyar agykutató, Buzsáki György ötlete nyomán. A szegedi tudósok módszerének újdonsága az is, hogy a mozgó állatmodellek agyműködésének több pontját nagy felbontásban figyelhetik, így egyszerre meg tudták vizsgálni az ingerek bemeneteit. Az eredményt összegző cikket a Neuron folyóirat 2017. március 8-án megjelent száma adta közre. Az SZTE-MTA Lendület Oszcillatorikus Neuronhálózatok Kutatócsoport legújabb publikációjában bemutatott felfedezéséről a csoportot vezető Berényi Antalt, az SZTE Általános Orvostudományi Kar Élettani Intézete adjunktusát kérdeztük.


Berenyiek_20170310

 

Hogyan kell elképzelnünk az úgynevezett hely-sejteknek az aktiválódását?

– E speciális, a tér leképezésére képes sejtek elsősorban a hippokampuszon belül találhatók meg. Ahogy a kísérleti állat egyik helyről a másikra szalad, sorra aktiválódnak az adott hely adott pontjaiért felelős sejtek. Tehát egy-egy idegsejt úgy és akkor aktiválódik, ahogy és amikor mondjuk a szoba közepétől elindulunk az egyik sarok irányába.

 

Hányféle „térkép” jöhet létre az agyban?

– A térkép-analógia részben sántít, de a probléma lényegére rávilágít. Vagyis: ha például ismerem Szegedet, de Budapestre indulok, akkor nem a szegedi térképet viszem magammal és nem azon gondolom végig a tervezett útvonalamat, hanem veszek egy budapesti térképet. Ám agyunk csak egy van, vagyis ugyanannak a néhány millió idegsejtnek kell tudnia elnavigálnia engem Szegeden, Budapesten, vagy éppen New Yorkban is. Sőt: agyunknak az ismeretlen helyen is úgy kell tudnia navigálni, hogy közben ne felejtse el például a szegedi térképet. Mi annak a területnek a vizsgálatára fókuszáltunk, amelyért az agyban egy-egy helysejt felel. Ezt helymezőnek vagy aktív zónának nevezhetjük. Ezek az aktív zónák azonban sokszor átfedik egymást. Mi arra a kérdésre kerestük a választ, hogy miként lesz ezeknek az átfedő mezőkért felelős sejtek aktivizálódásából egy pontos térkép, amely az adott tér minden egyes pontját képes leképezni? E folyamat mechanizmusát ugyanis eddig nem ismerték a kutatók.

 

Tehát ugyanaz a néhány millió idegsejt felel az agy „navigációs rendszeréért”, miközben nem fogyunk ki a lehetőségekből, nem „telik be” e memória, annak ellenére, hogy újabb és újabb helyszínekhez igazodnunk? Hogyan lehetséges ez?

– Úgy, hogy egy karmesterhez hasonlatos ritmus-szabályozás jelenség jellemzi az emberi agyat is. Ezek az úgynevezett théta-hullámok. E ritmus lassú, mert másodpercenként 8-12 hullám mozgásából áll. E globális ritmus minden idegsejt működésére hat. Amikor e ritmus az idegsejtek egyik fázisánál tart, akkor az idegsejtek „tüzelnek”, míg a következő fázisban mindegyik idegsejt „lecsöndesedik”. Az eredeti, Nobel-díjjal is elismert megfigyelés szerint a térképként funkcionáló úgynevezett hely-sejtek nem csak akkor aktiválódnak, amikor ez a théta-ritmus a „csúcsán van” és minden idegsejt „tüzel”, illetve nem csak akkor vannak „csöndben”, amikor mindenki csöndben van. Egy korábbi megfigyelés szerint: amikor az állat elér arra a helyre, ahol az adott hely-sejt aktív lenne, vagyis amikor belép arra a helyre, ahol ez a sejt aktiválódik, e sejtek egy kicsit korábban „tüzelnek”, mint kellene nekik. Aztán ahogy az állatmodellünk áthalad azon a területen, ami ennek a sejtnek a sajátja, akkor eltolódik e mozgás és e sejt fölzárkózik a többiekhez. Majd amikor az állat kifele halad erről a területről, akkor a hely-sejt a többiekhez képest késik, vagyis később „tüzel”. Tehát e hely-sejtek kilógnak a nagy, általános ritmusból.

 

Miért éppen így történik? Mi váltja ki ezt az eltérést?

– Mi erre a kérdésre találtuk meg a választ. Egy analógia talán segíti a válasz megértését. Képzeljünk el egy nagyvárost, ahol minden pék reggel 8 órakor nyitja ki az üzletét, és 16 órakor zárja. Így aztán annak az információnak, hogy a Kovács-pékség 8-16 óra között tart nyitva, nincs hírértéke. De ha a Kovács-pékség tulajdonosa úgy dönt, hogy hajnali 6 órától fogadja a vevőket, e ténynek óriási az információ tartalma. Vagyis arra mindenki emlékezni fog, hogy a Kovács-pékségben már reggel 6 órától friss kifli vásárolható. A nagy tömegből való kilógás a hippokampuszon belül ugyancsak nagy információs értékű. A háttérben meglévő okról még a hippokampusz klasszikus kutatója, Ramón y Cajal megállapította: e sejteket többféle bemeneti inger bombázza párhuzamosan. E sejtet részint a hippokampuszon belülről, részint az agykéreg felől is érinti bemenet. Azoknak a technikáknak köszönhetően, amelyeket alkalmazva mozgás közben tudjuk vizsgálni az állatmodelljeinket, és az eredményeket nagy felbontásban rögzíthetjük, mi kiderítettük: a bemenetek versengenek egymással. A hippokampuszon belülről érkező bemenet vagy inger kicsit később érkezik, mint az agykéreg felől induló inger. Tehát mi most azt fedeztük föl, hogy amikor az állat elérkezik arra a helyre, ahol az adott sejt jelzi, hogy az állat a hely-mezőben, az adott pozícióban tartózkodik, akkor a kérgi bemenet dominál, s mivel ez korai, ez húzza a sejtet, hogy korábban aktiválódjon, mint a nagy átlaghoz tartozó többi. Ahogy halad át a következő pontra az állat, ezt a kérgi dominanciát lassan átveszi a belső, hippokampális bemenet, ami késői és eltolja a sejtet abba az irányba, hogy később aktiválódjon. Vagyis két erő rángatja e sejteket, mint egy rugó: az egyik visszahúzza, a másik előbbre tolja, attól függően, hogy az állat hol tartózkodik. A miénk az első olyan kísérletes eredmény, ami rámutat arra, hogy a hippokampuszon belül a különböző bemenetek dinamikus egyensúlya mennyire fontos és mennyire komoly hozzáadott értéket képviselhet.


Berenyiek_Antonio_Neuron
A hippokampuszban rögzített komplex agyi aktivitás és annak dekódolása (bal és középső panel), valamint a dekódolt kérgi és hippokampális komponensek versengésének modellje a térbeli navigáció során (jobb). Forrás: Fernández Ruiz et al (2017), Neuron 93:1213-1226

 

Tehát egyre gyorsabban és gyorsabban „tüzel” a helysejt?

– Igen. Olyan ez, mint mikor az előadást kísérő tapsorkánon belül egy csoport a többséghez képest gyorsabban, eltérő ütemben tapsol. E jelenség a phase precession, ami „fázis-sietést” jelent.

 

Milyen funkciót képesek még ellátni ezek a sejtek?

Nem csak a helymeghatározás a dolguk a helysejteknek, mert amikor gondolkodunk, akkor is dolgoznak. Vagyis ha nem mozdulunk egyik pontról a másikra, hanem csak egymás után előhívjuk az egymáshoz fűződő információkat, akkor ugyanaz történik az agyban, mint mikor mozgunk és az egyes térrészek fűződnek egymáshoz. Ezért igaz a megfogalmazás: a gondolkodás valójában mentális utazás.

 

Honnan származik vizsgálatuk alapötlete?

– Ez hosszú történet. Buzsáki György ötlete volt 2011-ben, mikor Amerikában az EU ösztöndíjasaként mellette dolgoztam, hogy meg kellene nézni e bemeneteket, hiszen akkor készítettem az első ilyen nagyfelbontású felvételeket. Sokat gondolkoztunk, hogy mik azok a tudományos kérdések, amiket csak ezzel a módszerrel tudunk megválaszolni. Akkor elkezdtem e munkát, de az epilepszia-kutatás elvitte a fókuszt. Ezért csak most jutottunk odáig, hogy az MTA-SZTE kutatócsoportomban dolgozó kollégáknak volt annyi idejük, hogy szisztematikusan megnézzék a hely-sejtek működését. Így hat év elteltével találtunk konkrét bizonyítékokat a feltételezésre és megszületett a közlemény, amely a Neuron folyóiratban 2017. március 8-án látott napvilágot.

 

Szinte a Neuron folyóirat „állandó szerzőivé” válnak, hiszen 2016-ban is publikáltak ott a tanulás folyamatának megértéséhez hozzájáruló cikket. Mire fókuszálnak most? Mi lesz a következő kutatási témájuk?

– Időközben kutatótársaim Azahara Oliva González és Antonio Fernández-Ruiz szegedi szerződése lejárt, már az Amerikai Egyesült Államokban dolgoznak. De hamarosan új tagokkal bővülő kutatócsoportom tárháza szinte kifogyhatatlan, mert annyira jelentős mennyiségű az adathalmazunk: 8 állatkának a különböző feladatokkal kapcsolatos megoldásairól, működéséről az elmúlt 2 év alatt 48 kazettányi, vagyis 16 ezer DVD-nyi adatot gyűjtünk össze. Ennek a hatalmas adatkupacnak a vizsgálata a legkülönbözőbb irányokból lehetséges. A következő téma, amit szó szerint nagyító alá teszünk: a szorongás és / vagy a depresszió összetett problémakörének egy-egy darabkája, de természetesen az epilepszia-kutatást is folytatjuk.

 

Újszászi Ilona

Fotók: Bobkó Anna


Cikk nyomtatásCikk nyomtatás
Link küldésLink küldés

SZTEmagazin

2017. december 06.

kiemelt_Dux_Laszlo

Biológia, kémia és fizika tantárgyból, valamint a Nobel-díjas rektor életéből, munkásságából áll össze évről évre az egyre népszerűbb SZTE Szent-Györgyi Tanulmányi Verseny kérdéssora. A zsűri elnökével, prof. Dr. Dux László tanszékvezető egyetemi tanárral a Szent-Györgyi-örökségről és a középiskolások versenyéről beszélgettünk.

SZTEtelevízió

2017. szeptember 13.

kiemelt_tanevnyito2017

Olyan jelentős fejlesztések előtt áll az SZTE, amelyekkel nemzetközi rangú kutatóegyetemmé válik – jelentette ki a rektor, igazolta példákkal a kormányt képviselő igazságügyi miniszter. A Szegedi Tudományegyetem 2017-2018-as tanévet nyitó ünnepségéről készült rövid videó itt megtekinthető.

Eseménynaptár

Eseménynaptár RSS

Rendezvénynaptár *

  • december 18.
    10:00 - 14:30
    A Paál Zoltán díj átadása. A Katalízis Munkabizottság elnökének megválasztása. Sápi András (SZTE Alkalmazott és Környezeti Kémiai Tanszék) – Tervezett Katalízis: Nano- és in-situ technológiákkal a nagy aktivitás és szelektivitás felé. Havasi Viktor (SZTE Alkalmazott és Környezeti Kémiai Tanszék, PhD munka bemutató) – Ritkaföldfémekkel dópolt stroncium-aluminátok hasznosítása a fotokatalízisben. Ádám Adél (SZTE Szerves Kémiai Tanszék) – Nikkel nanorészecskék előállítása, jellemzése és felhasználása katalizátorként SZTE Alkalmazott és Környezeti Kémiai Tanszék). Varga Gábor (SZTE Szerves Kémiai Tanszék) – Átmenetifém-aminosav komplex-CaAl-réteges kettős hidroxid kompozitok készítése, szerkezetvizsgálatuk és katalitikus alkalmazásaik. Mészáros Rebeka, Ötvös Sándor Balázs, Varga Gábor, Kocsis Marianna, Pálinkó István, Fülöp Ferenc (SZTE Gyógyszerkémiai Intézet) – Hatékony heterogén ezüst katalizátor fejlesztése terminális alkinek közvetlen nitrillé alakításához. Gyulavári Tamás Zsolt (SZTE Alkalmazott és Környezeti Kémiai Tanszék) – Látható fénnyel gerjeszthető titán-dioxidok előállítása és jellemzése. Musza Katalin (SZTE Szerves Kémiai Tanszék) – Cu/Cu2O nanorészecskék szintézise, jellemzése és katalitikus aktivitásuk egy kapcsolási reakcióban. Tungler Antal (MTA Energiatudományi Kutatóközpont) – Gyógyszeripari szennyvizek ártalmatlanítása és hasznosítása.
  • december 19.
    10:00 - 16:47
    Az MTA Elektrokémiai Munkabizottság tudományos ülésének programja: Janáky Csaba (SZTE) – Új eredmények és kutatási irányok a szegedi fotoelektrokémiában. Kormányos Attila (SZTE) – Vezető polimer alapú összetett elektródok fotoelektrokémiája. Samu Gergely Ferenc (SZTE) – Optikailag aktív perovszkit elektródok vizsgálata. Kovács Noémi (ELTE) – Titánötvözetek elektrokémiai stabilitásának vizsgálata kettős potenciodinamikus vezérlést alkalmazó módszerekkel. Szekeres Krisztina Júlia (ELTE) – Vezető polimerfilm elektródok elektrokémiai és morfológiai vizsgálata. Pap Sándor József (MTA Energiakutató) – Réz(II)-peptid komplexek tervezése O2 elektrokatalitikus termeléséhez. Péter László (MTA Wigner) – Cirkónium elektrolitikus hidrogénezése. Tóth Péter Sándor (SZTE) – Grafén és egyéb kétdimenziós nanoszerkezetek (foto)elektrokémiai vizsgálata. Pajkossy Tamás (MTA TTK) – Egyebek. A rendezvény szervezője: SZAB Kémiai Szakbizottság Fizikai Kémiai és Anyagtudományi Munkabizottság.
  • december 19.
    15:00 - 17:00
    SZAB Orvostudományi Szakbizottság Sprottudományi Munkabizottság.
  • *
    december 19.
    17:00 - 18:30
    Mikszáth Kálmántól kezdve Wass Alberten át Oravecz Imréig több író, illetve számos tanulmány tudós szerzője is foglalkozik az amerikai kontinensen diaszpórában élő magyarok helyzetével. Újszászi Ilona újságíró, az SZTE közkapcsolati koordinátora legújabb riportkönyvében családtörténetekkel válaszol a kérdésre: Hogyan lettek ők „amerikai magyarok”? A fotókkal, számokkal, tényekkel illusztrált könyvbemutatón szó esik az amerikai bevándorlási hullámok különbözőségeiről és tanulságairól, ami segítheti a napjainkban Európát érintő migrációs válság értelmezését is.